首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic aberrations of DNA repair enzymes are known to be common events and to be associated with different cancer entities. Aim of the following study was to analyze the genetic association of rs1136410 (Val762Ala) in PARP1 gene with the risk of breast cancer using genotypic assays and insilico structural predictions. Genotypic analysis of individual locus showed statistically significant association of Val762Ala with increased susceptibility to breast cancer. Protein structural analysis was performed with Val762Ala variant allele and compared with the predicted native protein structure. Protein prediction analysis showed that this nsSNP may cause changes in the protein structure and it is associated with the disease. In addition to the native and mutant 3D structures of PARP1 were also analyzed using solvent accessibility models for further protein stability confirmation. Taken together, this the first study that confirmed Val762Ala variant has functional effect and structural impact on the PARP1 and may play an important role in breast cancer progression in Saudi population.  相似文献   

2.
Selenium (Se), a dietary trace metal essential for human health, is incorporated into ~25 selenoproteins including selenoprotein S (SelS) and the 15-kDa selenoprotein (Sep15) both of which have functions in the endoplasmic reticulum protein unfolding response. The aim of this study was to investigate whether genetic variants in such selenoprotein genes are associated with altered risk of colorectal cancer (CRC). A Korean population of 827 patients with CRC and 733 healthy controls was genotyped for 7 SNPs in selenoprotein genes and one SNP in the gene encoding manganese superoxide dismutase using Sequenom technology. Multivariate logistic regression analysis showed that after adjustment for lifestyle factors three SNP variants were associated with altered disease risk. There was a mean odds ratio of 2.25 [95% CI 1.13,4.48] in females homozygous TT for rs34713741 in SELS with the T variant being associated with higher risk of rectal cancer, and odds ratios of 2.47 and 2.51, respectively, for rs5845 and rs5859 in SEP15 with the minor A and T alleles being associated with increased risk of male rectal cancer. The data indicate that the minor alleles for rs5845, rs5859 and rs34713741 are associated with increased rectal cancer risk and that the effects of the three SNPs are dependent on gender. The results highlight potential links between Se, the function of two selenoproteins involved in the protein unfolding response and CRC risk. Further studies are required to investigate whether the effects of the variants on CRC risk are also modulated by dietary Se intake.  相似文献   

3.
4.
Age-related macular degeneration (AMD) is a progressive retinal disorder affecting over 33 million people worldwide. Genome-wide association studies (GWASs) for AMD identified common variants at 19 loci accounting for 15–65% of the heritability and it has been hypothesized that the missing heritability may be attributed to rare variants with large effect sizes. Common variants in the complement component 3 (C3) gene have been associated with AMD and recently a rare C3 variant (Lys155Gln) was identified which exerts a large effect on AMD susceptibility independent of the common variants. To explore whether additional rare variants in the C3 gene are associated with AMD, we sequenced all coding exons in 84 unrelated AMD cases. Subsequently, we genotyped all identified variants in 1474 AMD cases and 2258 controls. Additionally, because of the known genetic overlap between AMD and atypical hemolytic uremic syndrome (aHUS), we genotyped two recurrent aHUS-associated C3 mutations in the entire cohort. Overall, we identified three rare variants (Lys65Gln (P = 0.04), Arg735Trp (OR = 17.4, 95% CI = 2.2–136; P = 0.0003), and Ser1619Arg (OR = 5.2, 95% CI = 1.0–25; P = 0.05) at the C3 locus that are associated with AMD in our EUGENDA cohort. However, the Arg735Trp and Ser1619Arg variants were not found to be associated with AMD in the Rotterdam Study. The Lys65Gln variant was only identified in patients from Nijmegen, the Netherlands, and thus may represent a region-specific AMD risk variant.  相似文献   

5.
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are used in many biotechnological processes, including removal of polyphenols in beverages, decolorizing and detoxifying effluents, drug analysis and bioremediation. In the present work, we have tried to increase thermal stability of laccase from Bacillus HR03 using site directed point mutations. Glu188 was substituted with 2 positive (Lys and Arg) and one hydrophobic (Ala) residues. All mutations showed improved thermal stability. Thermal activation of laccase was also increased after introducing the mutations. Remarkably, the Glu188Lys variant showed 3-fold higher thermal activation and higher T50 (5 °C) with respect to the native enzyme. Furthermore steady-state kcat and Km values were influenced despite the distance between the mutated position and the catalytic site. In Glu188Arg mutation, the kcat was improved 3-fold and Km reduced by 25%. Interestingly, all three variants showed higher stability against urea as a chemical denaturant. Structural analyses of the native and mutated variants were carried out using fluorescence and far-UV circular dichroism.  相似文献   

6.
Ischemic stroke is a multifactorial disease leading to severe long-term disability and it is the third leading cause of death in developed countries. Although many studies have been reported to elucidate etiological and pathological mechanisms of stroke, the genetic and molecular basis of disease remains poorly understood. Recent studies have shown that reactive oxygen species causing oxidative stress play a pivotal role in the pathogenesis of atherosclerosis that is the main cause of a group of cardiovascular diseases including ischemic stroke. In this study, we aimed to investigate the relationship between FMO3 Glu158Lys and Glu308Gly variants, and the risk of incidence of ischemic stroke in Turkish population. Two single nucleotide polymorphisms (SNPs) within the FMO3 gene were genotyped by using PCR-RFLP technique in a sample set of 245 cases and 145 controls. In the case-control analysis, no significant difference was observed between stroke patients and controls with respect to FMO3 Glu158Lys and Glu308Gly polymorphisms' genotype and allele frequency distribution. However, heterozygote 158Glu/Lys (OR = 6.110, P < 0.001) and 308Glu/Gly (OR = 6.000, P = 0.006) genotypes increase the risk of stroke 6 times in hypertensive subjects. On the other hand, the wild type genotypes 158Glu/Glu and 308Glu/Glu had 6.2-fold and 4.8-fold higher risk of ischemic stroke in obese subgroup, respectively. Our results clearly showed that the risk of hypertension-related ischemic stroke was higher in the heterozygote genotype carriers. This is the first study conducted regarding the association of FMO3 Glu158Lys and Glu308Gly genetic polymorphisms and ischemic stroke risk in Turkish population.  相似文献   

7.
The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central β-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD.  相似文献   

8.
Abstract

Carbonic anhydrase 2 (CA2) enzyme deficiency caused by CA2 gene mutations is an inherited disorder characterized by symptoms like osteopetrosis, renal tubular acidosis, and cerebral calcification. This study has collected the CA2 deficiency causal missense mutations and assessed their pathogenicity using diverse computational programs. The 3D protein models for all missense mutations were built, and analyzed for structural divergence, protein stability, and molecular dynamics properties. We found M-CAP as the most sensitive prediction method to measure the deleterious potential of CA2 missense mutations. Free energy dynamics of tertiary structure models of CA2 mutants with DUET, mCSM, and SDM based consensus methods predicted only 50% of the variants as destabilizing. Superimposition of native and mutant CA2 models revealed the minor structural fluctuations at the amino acid residue level but not at the whole protein structure level. Near native molecular dynamic simulation analysis indicated that CA2 causative missense variants result in residue level fluctuation pattern in the protein structure. This study expands the understanding of genotype-protein phenotype correlations underlying CA2 variant pathogenicity and presents a potential avenue for modifying the CA2 deficiency by targeting biophysical structural features of CA2 protein.

Communicated by Ramaswamy H. Sarma  相似文献   

9.

Background

Many studies have investigated the association between the Glutathione S transferase-P1 (GSTP1) Ile105Val polymorphism and colorectal cancer (CRC) susceptibility, but the results were conflicting. The aim of this study is to quantitatively summarize the relationship between this polymorphism and CRC risk.

Methods

Two investigators independently searched the Medline, Embase, China National Knowledge Infrastructure (CNKI) and Chinese Biomedicine databases for studies published before December 2012. Summary odds ratios (ORs) and 95% confidence intervals (95% CIs) for GSTP1 polymorphism and CRC were calculated in a fixed-effects model (the Mantel–Haenszel method) and a random-effects model (the DerSimonian and Laird method) when appropriate.

Results

This meta-analysis included 29 case–control studies, which included 8160 CRC cases and 10,450 controls. Overall, the variant genotypes (ValVal and IleVal) of the Ile105Val were not associated with CRC risk when compared with the wild-type IleIle homozygote. Similarly, no associations were found in the dominant and recessive models. When stratifying for ethnicity, source of controls, study sample size and genotyping methods, no evidence of significant association was observed in any subgroup, except among those studies taking others as genotyping methods (recessive model, OR = 0.71, 95%CI = 0.52–0.96). Limiting the analysis to the studies within Hardy–Weinberg equilibrium, the results were persistent and robust. No publication bias was found in the present study.

Conclusion

This updated meta-analysis suggests that the GSTP1 Ile105Val polymorphism may not be associated with CRC risk, while the observed decrease in risk of CRC may be due to small-study bias.  相似文献   

10.
Obesity is a multifactorial metabolic disorder characterized by low grade chronic inflammation. Rare and novel mutations in genes which are vital in several key pathways have been reported to alter the energy expenditure which regulates body weight. The TP53 or p53 gene plays a prominent role in regulating various metabolic activities such as glycolysis, lipolysis, and glycogen synthesis. Recent genome-wide association studies reported that tumor suppressor gene p53 variants play a critical role in the predisposition of type 2 diabetes and obesity. Till date, no reports are available from the Arabian population; hence the present study was intended to assess the association between p53 variants with risk of obesity development in the Saudi population. We have selected three p53 polymorphisms, rs1642785 (C > G), and rs9894946 (A > G), and rs1042522 (Pro72Arg; C > G) and assessed their association with obesity risk in the Saudi population. Phenotypic and biochemical parameters were also evaluated to check their association with p53 genotypes and obesity. Genotyping was carried out on 136 obese and 122 normal samples. We observed that there is significantly increased prevalence p52 Pro72Arg (rs1042522) polymorphism in obese persons when compared to controls at GG genotype in overall comparison (OR: 2.169, 95% CI: 1.086-4.334, p = 0.02716). Male obese subjects showed three-fold higher risk at GG genotype (OR: 3.275, 95% CI: 1.230-8.716, p = 0.01560) and two-fold risk at G allele (OR: 1.827, 95% CI: 1.128-2.958, p = 0.01388) of p53 variant Pro72Arg respectively. This variant has also shown significant influence on cholesterol, LDL level, and random insulin levels in obese subjects (p ≤ 0.05). In conclusion, p53 Pro72Arg variant is highly prevalent among obese individuals and may act as a genetic modifier for obesity development among Saudis.  相似文献   

11.
The N‐Myc Downstream‐Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4 −/−) CRC models and an indirect co‐culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4 −/− ENS cell secretome, which is enriched for Nidogen‐1 (Nid1) and Fibulin‐2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS‐derived Nidogen‐1 and Fibulin‐2 enhance colorectal carcinogenesis.  相似文献   

12.
The polymorphisms at amino acid residues 136, 154, and 171 in ovine prion protein (PrP) have been associated with different susceptibility to scrapie: animals expressing PrPARQ [PrP(Ala136/Arg154/Gln171)] show vulnerability, whereas those that express PrPARR [PrP(Ala136/Arg154/Arg171)] are resistant to scrapie. The aim of this study was to evaluate the in vitro toxic effects of PrPARR and PrPARQ variants in relation with their structural characteristics. We show that both peptides cause cell death inducing apoptosis but, unexpectedly, the scrapie resistant PrPARR form was more toxic than the scrapie susceptible PrPARQ variant. Moreover, the α-helical conformation of PrPARR was less stable than that of PrPARQ and the structural determinants responsible of these different conformational stabilities were characterized by spectroscopic analysis. We observed that PrP toxicity was inversely related to protein structural stability, being the unfolded conformation more toxic than the native one. However, the PrPARQ variant displays a higher propensity to form large aggregates than PrPARR. Interestingly, in the presence of small amounts of PrPARR, PrPARQ aggregability was reduced to levels similar to that of PrPARR. Thus, in contrast to PrPARR toxicity, scrapie transmissibility seems to reside in the more stable conformation of PrPARQ that allows the formation of large amyloid fibrils.  相似文献   

13.

Background

Recently nonsynonymous coding variants in the ankyrin repeats and suppressor of cytokine signaling box-containing protein 10 (ASB10) gene were found to be associated with primary open angle glaucoma (POAG) in cohorts from Oregon and Germany, but this finding was not confirmed in an independent cohort from Iowa. The aim of the current study was to assess the role of ASB10 gene variants in Pakistani glaucoma patients.

Methods

Sanger sequencing of the coding exons and splice junctions of the ASB10 gene was performed in 30 probands of multiplex POAG families, 208 sporadic POAG patients and 151 healthy controls from Pakistan. Genotypic associations of individual variants with POAG were analyzed with the Fisher’s exact or Chi-square test.

Results

In total 24 variants were identified in POAG probands and sporadic patients, including 11 novel variants and 13 known variants. 13 of the variants were nonsynonymous, 6 were synonymous, and 5 were intronic. Three nonsynonymous variants (p.Arg49Cys, p.Arg237Gly, p.Arg453Cys) identified in the probands were not segregating in the respective families. This is not surprising since glaucoma is a multifactorial disease, and multiple factors are likely to be involved in the disease manifestation in these families. However a nonsynonymous variant, p.Arg453Cys (rs3800791), was found in 6 sporadic POAG patients but not in controls, suggesting that it infers increased risk for the disease. In addition, one synonymous variant was found to be associated with sporadic POAG: p.Ala290Ala and the association of the variant with POAG remained significant after correction for multiple testing (uncorrected p-value 0.002, corrected p-value 0.047). The cumulative burden of rare, nonsynonymous variants was significantly higher in sporadic POAG patients compared to control individuals (p-value 0.000006).

Conclusions

Variants in ASB10 were found to be significantly associated with sporadic POAG in the Pakistani population. This supports previous findings that sequence variants in the ASB10 gene may act as a risk factor for glaucoma.  相似文献   

14.
Mutations in FBXL4 (F-Box and Leucine rich repeat protein 4), a nuclear-encoded mitochondrial protein with an unknown function, cause mitochondrial DNA depletion syndrome. We report two siblings, from consanguineous parents, harbouring a previously uncharacterized homozygous variant in FBXL4 (c.1750 T > C; p.Cys584Arg). Both patients presented with encephalomyopathy, lactic acidosis and cardiac hypertrophy, which are reported features of FBXL4 impairment. Remarkably, dichloroacetate (DCA) administration to the younger sibling improved metabolic acidosis and reversed cardiac hypertrophy. Characterization of FBXL4 patient fibroblasts revealed severe bioenergetic defects, mtDNA depletion, fragmentation of mitochondrial networks, and abnormalities in mtDNA nucleoids. These phenotypes, observed with other pathogenic FBXL4 variants, confirm the pathogenicity of the p.Cys584Arg variant. Although treating FBXL4 fibroblasts with DCA improved extracellular acidification, in line with reduced lactate levels in patients, DCA treatment did not improve any of the other mitochondrial functions. Nonetheless, we highlight DCA as a potentially effective drug for the management of elevated lactate and cardiomyopathy in patients with pathogenic FBXL4 variants. Finally, as the exact mechanism through which FBXL4 mutations lead to mtDNA depletion was unknown, we tested the hypothesis that FBXL4 promotes mitochondrial fusion. Using a photo-activatable GFP fusion assay, we found reduced mitochondrial fusion rates in cells harbouring a pathogenic FBXL4 variant. Meanwhile, overexpression of wildtype FBXL4, but not the p.Cys584Arg variant, promoted mitochondrial hyperfusion. Thus, we have uncovered a novel function for FBXL4 in promoting mitochondrial fusion, providing important mechanistic insights into the pathogenic mechanism underlying FBXL4 dysfunction.  相似文献   

15.
Mutations in the gene triosephosphate isomerase (TPI) lead to a severe multisystem condition that is characterized by hemolytic anemia, a weakened immune system, and significant neurologic symptoms such as seizures, distal neuropathy, and intellectual disability. No effective therapy is available. Here we report a compound heterozygous patient with a novel TPI pathogenic variant (NM_000365.5:c.569G>A:p.(Arg189Gln)) in combination with the common (NM_000365.5:c.315G>C:p.(Glu104Asp)) allele. We characterized the novel variant by mutating the homologous Arg in Drosophila using a genomic engineering system, demonstrating that missense mutations at this position cause a strong loss of function. Compound heterozygote animals were generated and exhibit motor behavioural deficits and markedly reduced protein levels. Furthermore, examinations of the TPIArg189Gln/TPIGlu104Asp patient fibroblasts confirmed the reduction of TPI levels, suggesting that Arg189Gln may also affect the stability of the protein. The Arg189 residue participates in two salt bridges on the backside of the TPI enzyme dimer, and we reveal that a mutation at this position alters the coordination of the substrate-binding site and important catalytic residues. Collectively, these data reveal a new human pathogenic variant associated with TPI deficiency, identify the Arg189 salt bridge as critical for organizing the catalytic site of the TPI enzyme, and demonstrates that reduced TPI levels are associated with human TPI deficiency. These findings advance our understanding of the molecular pathogenesis of the disease, and suggest new therapeutic avenues for pre-clinical trials.  相似文献   

16.
The X-ray repair cross-complementing group 1 (XRCC1) protein plays a central role in DNA repair pathways. Epidemiological studies have revealed the association between XRCC1 Arg280His polymorphism and cancer risk, but the results were inconsistent. We conducted this meta-analysis to assess the effect of XRCC1 Arg280His polymorphism on cancer susceptibility with accumulated data. Up to January 2012, 53 case‐control studies with 21,349 cases and 23,649 controls were available for our study. Summary odds ratios (OR) and corresponding 95% confidence intervals (CIs) for XRCC1 Arg280His polymorphism and cancer were estimated using fixed‐ or random-effects models when appropriate. Our meta-analysis identified that elevated cancer risk was statistically associated with the minor variant His allele and Arg–His/His–His genotypes both in the overall population (allele comparison, His versus Arg: OR = 1.16; 95% CI: 1.08–1.25; dominant comparison, Arg–His/His–His versus Arg–Arg: OR = 1.17; 95% CI: 1.08–1.27) and in terms of subgroup analyses by ethnicity for both Caucasians and non‐Caucasians. However, no significant result was observed in the stratified analysis by cancer type. Moreover, significantly increased cancer risk was observed in smokers. These findings indicated that XRCC1 Arg280His polymorphism may play a role in cancer development.  相似文献   

17.
Effective DNA repair machinery ensures maintenance of genomic integrity. Environmental insults, ageing and replication errors necessitate the need for proper DNA repair systems. Any alteration in DNA repair efficacy would play a dominant role in progression of squamous cell carcinoma of head and neck (SCCHN). Genotypes of XRCC1 gene-Arg194Trp, Arg280His, Arg399Gln and XPD Lys751Gln, by PCR-RFLP were studied in 278 SCCHN patients and an equal number of matched healthy controls residing in north India. In XRCC1 polymorphisms, Arg194Trp and Arg399Gln variants showed a reduced risk, whereas, XPD Lys751Gln variants exhibited ~2-fold increase in SCCHN risk. With XRCC1-Arg280His variants, there was no association with SCCHN risk. Arg399Gln of XRCC1 appears to have a protective role in people those consume alcohol, while XPD Lys751Gln variants indicated ~2-fold increased risk of SCCHN in all the co-variate groups. Comparison of gene-gene interaction among XRCC1 Arg280His and XPD Lys751Gln suggested enhanced risk of SCCHN by ~2.3-fold in group one and ~6.1-fold in group two. In dichotomized groups of this combination, the risk was ~2.4 times. Haplotype analysis revealed the frequency of C-G-G-G and C-A-G-G to be significantly associated with an increased risk of SCCHN. On the contrary, T-G-A-A significantly diminished the risk. CART analysis results showed that the terminal node that contains homozygous mutants of XPD Lys751Gln and XRCC1 Arg194Trp, wild type of XRCC1 Arg399Gln and homozygous mutant of XRCC1 Arg280His, represent the highest risk group. Our results demonstrate high degree of gene-gene interaction involving DNA repair genes of NER and BER pathways, namely XRCC1 and XPD. This study amply demonstrates positive association of XPD Arg751Gln polymorphism with an increased risk of SCCHN. Further, XRCC1 Arg280His variant though dormant individually, may also contribute to the development of cancer in combination with XPD Arg751Gln.  相似文献   

18.
Reactive oxygen species are considered to play a role in the development of type 2 diabetes mellitus (T2DM) and its complications. 8-Oxoguanine, which is one of the major oxidation base lesions produced by reactive oxygen species, may cause G:C to T:A transversion mutations because it can mispair with adenine. hMTH1 (human mutT homolog 1), hOGG1 (human 8-oxoguanine glycosylase 1) and MUTYH (human mutY homolog) genes constitute the 8-oxoG repair pathway. In this study, we screened for the polymorphism variants Val83Met (c.247G>A, rs4866) in hMTH1; c.-53G>C (rs56387615), c.-23A>G (rs1801129) and c.-18G>T (rs1801126) in the 5′-UTR of hOGG1; and AluYb8 insertion in MUTYH (AluYb8MUTYH, rs10527342) and investigated their synergistic effect on the risk of T2DM in the Chinese population. The genotypes were determined by electrophoresis, a high-resolution melting technique and sequencing of PCR products. Our results showed that the c.247G>A variant in the hMTH1 gene increased the risk of T2DM in > 55 years of age groups (OR = 1.579; 95%CI: 1.029–2.421). The set of c.-53G>C, c.-23A>G and c.-18G>T variants detected in the 5′-UTR of the hOGG1 gene and the AluYb8 insertion in the MUTYH gene were each associated with an increased risk of T2DM (OR = 1.507, 95%CI: 1.122–2.024; OR = 1.229, 95%CI: 1.030–1.466, respectively). Combined analysis of the variations among the three genes suggested that the c.247G>A variant in hMTH1 combined with AluYb8MUTYH variant had a synergistic effect on increasing the risk of T2DM (OR = 1.635; 95%CI: 1.147–2.330). This synergy was also observed between the variants in the 5′-UTR of the hOGG1 and the AluYb8MUTYH variant (OR = 1.804; 95%CI: 1.254–2.595). Our results suggest, for the first time, the combined effects of AluYb8MUTYH with either hMTH1 c.247G>A or variants in the 5′-UTR of the hOGG1 on the risk of T2DM.  相似文献   

19.
BackgroundExperimental results indicate that riboflavin is involved in tumorigenesis. Data regarding the relationship between riboflavin and colorectal cancer (CRC) are limited, and findings vary between observational studies.DesignThis was a case–control retrospective study.ObjectiveThis study aimed to evaluate the associations between serum riboflavin level and sporadic CRC risk.MethodsIn total, 389 participants were enrolled in this study – including 83 CRC patients without family history and 306 healthy controls – between January 2020 and March 2021 at the Department of Colorectal Surgery and Endoscope Center at Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. Age, sex, body mass index, history of polyps, disease conditions (e.g., diabetes), medications, and eight other vitamins were used as confounding factors. Adjusted smoothing spline plots, subgroup analysis, and multivariate logistic regression analysis were conducted to estimate the relative risk between serum riboflavin levels and sporadic CRC risk. After fully adjusting for the confounding factors, an increased risk of colorectal cancer was suggested for individuals with higher levels of serum riboflavin (OR = 1.08 (1.01, 1.15), p = 0.03) in a dose–response relationship.ConclusionsOur results support the hypothesis that higher levels of riboflavin may play a role in facilitating colorectal carcinogenesis. The finding of high levels of circulating riboflavin in patients with CRC warrants further investigation.  相似文献   

20.
Background: There is accumulating evidence of aberrant expression of miR-143 and miR-145 and their target gene KRAS in colorectal cancer (CRC). We hypothesize that single nucleotide polymorphisms (SNPs) within or near mRNA–microRNA (miRNA) binding sites may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and promoting the development and progression of CRC. Methods: We conducted a case–control study of 507 patients with CRC recruited from a tertiary hospital and 497 population-based controls to assess the association of genetic polymorphisms in miR-143/145 and the KRAS 3′ untranslated region (3′UTR) with susceptibility to CRC and patients’ survival. In addition, genetic variations of genomic regions located from 500 bp upstream to 500 bp downstream of the miR-143/miR-145 gene and the 3′UTR of KRAS were selected for analysis using the Haploview and HaploReg software. Results: Using publicly available expression profiling data, we found that miR-143/145 and KRAS expression were all reduced in rectal cancer tissue compared with adjacent non-neoplastic large intestinal mucosa. The rs74693964 C/T variant located 65 bp downstream of miR-145 genomic regions was observed to be associated with susceptibility to CRC (adjusted odds ratio (OR): 2.414, 95% CI: 1.385–4.206). Cumulative effects of miR-143 and miR-145 on CRC risk were observed (Ptrend=0.03). Patients having CRC carrying variant genotype TT of KRAS rs712 had poorer survival (log-rank P=0.044, adjusted hazard ratio (HR): 4.328, 95% CI: 1.236–15.147). Conclusions: Our results indicate that miRNA-related polymorphisms in miR-143/145 and KRAS are likely to be deleterious and represent potential biomarkers for susceptibility to CRC and patients’ survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号