首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
The reliable assessment of the quality of protein structural models is fundamental to the progress of structural bioinformatics. The ModFOLD server provides access to two accurate techniques for the global and local prediction of the quality of 3D models of proteins. Firstly ModFOLD, which is a fast Model Quality Assessment Program (MQAP) used for the global assessment of either single or multiple models. Secondly ModFOLDclust, which is a more intensive method that carries out clustering of multiple models and provides per-residue local quality assessment. AVAILABILITY: http://www.biocentre.rdg.ac.uk/bioinformatics/ModFOLD/.  相似文献   

3.
SUMMARY: We built a web server named APOLLO, which can evaluate the absolute global and local qualities of a single protein model using machine learning methods or the global and local qualities of a pool of models using a pair-wise comparison approach. Based on our evaluations on 107 CASP9 (Critical Assessment of Techniques for Protein Structure Prediction) targets, the predicted quality scores generated from our machine learning and pair-wise methods have an average per-target correlation of 0.671 and 0.917, respectively, with the true model quality scores. Based on our test on 92 CASP9 targets, our predicted absolute local qualities have an average difference of 2.60 ? with the actual distances to native structure. AVAILABILITY: http://sysbio.rnet.missouri.edu/apollo/. Single and pair-wise global quality assessment software is also available at the site.  相似文献   

4.
MOTIVATION: Evolutionary relationships of proteins have long been derived from the alignment of protein sequences. But from the view of function, most restraints of evolutionary divergence operate at the level of tertiary structure. It has been demonstrated that quantitative measures of dissimilarity in families of structurally similar proteins can be applied to the construction of trees from a comparison of their three-dimensional structures. However, no convenient tool is publicly available to carry out such analyses. RESULTS: We developed STRUCLA (STRUcture CLAssification), a WWW tool for generation of trees based on evolutionary distances inferred from protein structures according to various methods. The server takes as an input a list of PDB files or the initial alignment of protein coordinates provided by the user (for instance exported from SWISS PDB VIEWER). The user specifies the distance cutoff and selects the distance measures. The server returns series of unrooted trees in the NEXUS format and corresponding distance matrices, as well as a consensus tree. The results can be used as an alternative and a complement to a fixed hierarchy of current protein structure databases. It can complement sequence-based phylogenetic analysis in the 'twilight zone of homology', where amino acid sequences are too diverged to provide reliable relationships.  相似文献   

5.

Background  

Prediction of protein structures is one of the fundamental challenges in biology today. To fully understand how well different prediction methods perform, it is necessary to use measures that evaluate their performance. Every two years, starting in 1994, the CASP (Critical Assessment of protein Structure Prediction) process has been organized to evaluate the ability of different predictors to blindly predict the structure of proteins. To capture different features of the models, several measures have been developed during the CASP processes. However, these measures have not been examined in detail before. In an attempt to develop fully automatic measures that can be used in CASP, as well as in other type of benchmarking experiments, we have compared twenty-one measures. These measures include the measures used in CASP3 and CASP2 as well as have measures introduced later. We have studied their ability to distinguish between the better and worse models submitted to CASP3 and the correlation between them.  相似文献   

6.
Multibody potentials have been of much interest recently because they take into account three dimensional interactions related to residue packing and capture the cooperativity of these interactions in protein structures. Our goal was to combine long range multibody potentials and short range potentials to improve recognition of native structure among misfolded decoys. We optimized the weights for four-body nonsequential, four-body sequential, and short range potentials to obtain optimal model ranking results for threading and have compared these data against results obtained with other potentials (26 different coarse-grained potentials from the Potentials 'R'Us web server have been used). Our optimized multibody potentials outperform all other contact potentials in the recognition of the native structure among decoys, both for models from homology template-based modeling and from template-free modeling in CASP8 decoy sets. We have compared the results obtained for this optimized coarse-grained potentials, where each residue is represented by a single point, with results obtained by using the DFIRE potential, which takes into account atomic level information of proteins. We found that for all proteins larger than 80 amino acids our optimized coarse-grained potentials yield results comparable to those obtained with the atomic DFIRE potential.  相似文献   

7.

Background  

Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally important tools in protein structure modeling and quality assessment.  相似文献   

8.
9.
ABSTRACT: BACKGROUND: Intrinsically unstructured proteins (IUPs) lack a well-defined three-dimensional structure. Some of them may assume a locally stable structure under specific conditions, e.g. upon interaction with another molecule, while others function in a permanently unstructured state. The discovery of IUPs challenged the traditional protein structure paradigm, which stated that a specific well-defined structure defines the function of the protein. As of December 2011, approximately 60 methods for computational prediction of protein disorder from sequence have been made publicly available. They are based on different approaches, such as utilizing evolutionary information, energy functions, and various statistical and machine learning methods. RESULTS: Given the diversity of existing intrinsic disorder prediction methods, we decided to test whether it is possible to combine them into a more accurate meta-prediction method. We developed a method based on arbitrarily chosen 13 disorder predictors, in which the final consensus was weighted by the accuracy of the methods. We have also developed a disorder predictor GSmetaDisorder3D that used no third-party disorder predictors, but alignments to known protein structures, reported by the protein fold-recognition methods, to infer the potentially structured and unstructured regions. Following the success of our disorder predictors in the CASP8 benchmark, we combined them into a meta-meta predictor called GSmetaDisorderMD, which was the top scoring method in the subsequent CASP9 benchmark. CONCLUSIONS: A series of disorder predictors described in this article is available as a MetaDisorder web server at http://iimcb.genesilico.pl/metadisorder/. Results are presented both in an easily interpretable, interactive mode and in a simple text format suitable for machine processing.  相似文献   

10.
MOTIVATION: Evaluating the accuracy of predicted models is critical for assessing structure prediction methods. Because this problem is not trivial, a large number of different assessment measures have been proposed by various authors, and it has already become an active subfield of research (Moult et al. (1997,1999) and CAFASP (Fischer et al. 1999) prediction experiments have demonstrated that it has been difficult to choose one single, 'best' method to be used in the evaluation. Consequently, the CASP3 evaluation was carried out using an extensive set of especially developed numerical measures, coupled with human-expert intervention. As part of our efforts towards a higher level of automation in the structure prediction field, here we investigate the suitability of a fully automated, simple, objective, quantitative and reproducible method that can be used in the automatic assessment of models in the upcoming CAFASP2 experiment. Such a method should (a) produce one single number that measures the quality of a predicted model and (b) perform similarly to human-expert evaluations. RESULTS: MaxSub is a new and independently developed method that further builds and extends some of the evaluation methods introduced at CASP3. MaxSub aims at identifying the largest subset of C(alpha) atoms of a model that superimpose 'well' over the experimental structure, and produces a single normalized score that represents the quality of the model. Because there exists no evaluation method for assessment measures of predicted models, it is not easy to evaluate how good our new measure is. Even though an exact comparison of MaxSub and the CASP3 assessment is not straightforward, here we use a test-bed extracted from the CASP3 fold-recognition models. A rough qualitative comparison of the performance of MaxSub vis-a-vis the human-expert assessment carried out at CASP3 shows that there is a good agreement for the more accurate models and for the better predicting groups. As expected, some differences were observed among the medium to poor models and groups. Overall, the top six predicting groups ranked using the fully automated MaxSub are also the top six groups ranked at CASP3. We conclude that MaxSub is a suitable method for the automatic evaluation of models.  相似文献   

11.
The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. "Structural biology-grade" proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.  相似文献   

12.
We present a Model Quality Assessment Program (MQAP), called MQAPsingle, for ranking and assessing the absolute global quality of single protein models. MQAPsingle is quasi single‐model MQAP, a method that combines advantages of both “pure” single‐model MQAPs and clustering MQAPs. This approach results in higher accuracy compared to the state‐of‐the‐art single‐model MQAPs. Notably, the prediction for a given model is the same regardless if this model is submitted to our server alone or together with other models. Proteins 2016; 84:1021–1028. © 2015 Wiley Periodicals, Inc.  相似文献   

13.

Background  

Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network.  相似文献   

14.
15.
Zhang Y  Skolnick J 《Proteins》2004,57(4):702-710
We have developed a new scoring function, the template modeling score (TM-score), to assess the quality of protein structure templates and predicted full-length models by extending the approaches used in Global Distance Test (GDT)1 and MaxSub.2 First, a protein size-dependent scale is exploited to eliminate the inherent protein size dependence of the previous scores and appropriately account for random protein structure pairs. Second, rather than setting specific distance cutoffs and calculating only the fractions with errors below the cutoff, all residue pairs in alignment/modeling are evaluated in the proposed score. For comparison of various scoring functions, we have constructed a large-scale benchmark set of structure templates for 1489 small to medium size proteins using the threading program PROSPECTOR_3 and built the full-length models using MODELLER and TASSER. The TM-score of the initial threading alignments, compared to the GDT and MaxSub scoring functions, shows a much stronger correlation to the quality of the final full-length models. The TM-score is further exploited as an assessment of all 'new fold' targets in the recent CASP5 experiment and shows a close coincidence with the results of human-expert visual assessment. These data suggest that the TM-score is a useful complement to the fully automated assessment of protein structure predictions. The executable program of TM-score is freely downloadable at http://bioinformatics.buffalo.edu/TM-score.  相似文献   

16.
We introduce the computer tool “Know Your Samples” (KYSS) for assessment and visualisation of large scale proteomics datasets, obtained by mass spectrometry (MS) experiments. KYSS facilitates the evaluation of sample preparation protocols, LC peptide separation, and MS and MS/MS performance by monitoring the number of missed cleavages, precursor ion charge states, number of protein identifications and peptide mass error in experiments. KYSS generates several different protein profiles based on protein abundances, and allows for comparative analysis of multiple experiments. KYSS was adapted for blood plasma proteomics and provides concentrations of identified plasma proteins. We demonstrate the utility of the KYSS tool for MS based proteome analysis of blood plasma and for assessment of hydrogel particles for depletion of abundant proteins in plasma. The KYSS software is open source and is freely available at http://kyssproject.github.io/.  相似文献   

17.
A new method for the homology-based modeling of protein three-dimensional structures is proposed and evaluated. The alignment of a query sequence to a structural template produced by threading algorithms usually produces low-resolution molecular models. The proposed method attempts to improve these models. In the first stage, a high-coordination lattice approximation of the query protein fold is built by suitable tracking of the incomplete alignment of the structural template and connection of the alignment gaps. These initial lattice folds are very similar to the structures resulting from standard molecular modeling protocols. Then, a Monte Carlo simulated annealing procedure is used to refine the initial structure. The process is controlled by the model's internal force field and a set of loosely defined restraints that keep the lattice chain in the vicinity of the template conformation. The internal force field consists of several knowledge-based statistical potentials that are enhanced by a proper analysis of multiple sequence alignments. The template restraints are implemented such that the model chain can slide along the template structure or even ignore a substantial fraction of the initial alignment. The resulting lattice models are, in most cases, closer (sometimes much closer) to the target structure than the initial threading-based models. All atom models could easily be built from the lattice chains. The method is illustrated on 12 examples of target/template pairs whose initial threading alignments are of varying quality. Possible applications of the proposed method for use in protein function annotation are briefly discussed.  相似文献   

18.
Structural characterization of protein‐protein interactions is essential for understanding life processes at the molecular level. However, only a fraction of protein interactions have experimentally resolved structures. Thus, reliable computational methods for structural modeling of protein interactions (protein docking) are important for generating such structures and understanding the principles of protein recognition. Template‐based docking techniques that utilize structural similarity between target protein‐protein interaction and cocrystallized protein‐protein complexes (templates) are gaining popularity due to generally higher reliability than that of the template‐free docking. However, the template‐based approach lacks explicit penalties for intermolecular penetration, as opposed to the typical free docking where such penalty is inherent due to the shape complementarity paradigm. Thus, template‐based docking models are commonly assumed to require special treatment to remove large structural penetrations. In this study, we compared clashes in the template‐based and free docking of the same proteins, with crystallographically determined and modeled structures. The results show that for the less accurate protein models, free docking produces fewer clashes than the template‐based approach. However, contrary to the common expectation, in acceptable and better quality docking models of unbound crystallographically determined proteins, the clashes in the template‐based docking are comparable to those in the free docking, due to the overall higher quality of the template‐based docking predictions. This suggests that the free docking refinement protocols can in principle be applied to the template‐based docking predictions as well. Proteins 2016; 85:39–45. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
QMEAN: A comprehensive scoring function for model quality assessment   总被引:3,自引:0,他引:3  
  相似文献   

20.
A diagnostic for assessing the quality of a fold has been developed to which further criteria can be progressively added. The goal is to create a measure that can follow the status of a protein structure in a simulation or modeling process, when the answer (the experimental structure) is not known in advance, rather than simply reject deliberate misfolds. This places greater emphasis on the need to study, and calibrate against, marginal cases, i.e., unusual native structures, incomplete structures, partially erroneous X-ray structures, good models, poor models, and the effect of cofactors. The first three terms introduced in the diagnostic are appropriate core-forming properties or noncore properties of residues in relation to tertiary structure, appropriate neighboring structure density for each residue in relation to tertiary structure, and secondary structure consistency. While the method emerges as a useful simulation analysis tool, we find a need for further fine-tuning to diminish sensitivity to minor conformational changes that retain essential features of the fold, balanced against the need to obtain a more sensitive response when a conformational change involves less physically meaningful interatomic interactions. This dual utility is difficult to obtain: the investigation highlights some of the issues. Initial attempts to obtain it have led to terms in the diagnostic that are admittedly complex: simplifications must also be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号