首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An attempt was made to label injured cardiac muscle cells by exposing them to two electron-opaque tracers, ruthenium red and lanthanum nitrate. To do this, false tendons of sheep hearts containing strands of Purkinje fibers were sectioned, allowed to heal, and then exposed to the tracer during fixation. After this treatment, a group of cells near the cut end were found to be labelled intracellularly with the tracers while the remaining cells in the strand were unlabelled.For comparison, several false tendons were fixed briefly in glutaraldehyde before being cut and then exposed to the tracer. With lanthanum, the results were similar to those obtained when the cells had been damaged prior to fixation. However, when ruthenium red was used as the tracer, it penetrated much further into the cellular strand, its intensity gradually diminishing with distance from the cut end. This finding of apparent dye-coupling in fixed tissue was surprising since it has been suggested that glutaraldehyde fixation converts all communicating junctions to the uncoupled state.Dye-coupling of fixed tissue with ruthenium red as a tracer was seen also in frog atrial trabeculae.Gap junctions between injured (and presumably uncoupled) sheep heart Purkinje cells were compared to gap junctions between uninjured control cells in thin sections. No difference was detected.  相似文献   

2.
Evolution in invasive plants: implications for biological control   总被引:2,自引:0,他引:2  
Evidence is increasing that invasive plants can undergo rapid adaptive evolution during the process of range expansion. Here, we argue that evolutionary change during invasions will also affect plant-antagonist interactions and, thus, will have important implications for biological control programmes targeted at invasive plants. We explore how altered selection in the new range might influence the evolution of plant defence (resistance and tolerance) and life history. The degree to which such evolutionary processes might affect biological control efficacy is largely unexplored. We hope that, by testing the hypotheses that we propose here, a closer link can be established between biological control and evolutionary biology, to the benefit of both disciplines.  相似文献   

3.
4.
5.
6.
7.
As the nerve-mediated signaling in animals, long-distance signaling in plants is a prerequisite for plants to be able to perceive environmental stimuli and initiate adaptive responses. While intracellular signal transduction has been attracting considerable attentions, studies on long-distance signaling in plants has been relatively overlooked. Stomatal movements are well recognized as a model system for studies on cellular signal transduction. It has been demonstrated that the stomatal movements may be frequently tuned by long-distance signaling under various environmental stimuli. Stomatal movements can not only respond to persistent stress stimuli but also respond to shock stress stimuli. Stomatal responses to drought stress situations may be best characterized in terms of interwoven networks of chemical signaling pathways playing predominant roles in these adaptive processes. In cases of shock stress stimuli, stomatal movements can be more sensitively regulated through the long-distance signaling but with distinctive patterns not observed for drought or other persistent stresses. Here, the fundamental characteristics of stomatal movements and associated long-distance signaling are reviewed and the implications for plant responses to environmental stresses are discussed.Key words: stomatal movement, long-distance signaling, environmental stresses, abscisic aci, pH signaling, hydraulic signaling, cytokinins, acetylcholine, heat-shock, electric signal  相似文献   

8.
9.
Zoophytophagous insects can feed on a variety of prey, plants and plant products. By studying the interactions between predatory hemipterans and plants harbouring the prey of these insects, scientists have started to establish two potential outcomes: (1) positive effects like the enhancement of their life history characteristics by acquiring plant contents; and (2) negative effects mediated by plant resistance to herbivores or prey ingesting secondary plant metabolites. Despite this research, there is a lack of information about the feeding sites of predatory hemipterans on their host plants, what they ingest from plants, and whether they cause damage to their host plants. The results presented here indicate that the xylem is one of the feeding sites of predatory hemipterans on plants. The dissection of predators that fed on plants with marked vessels and testing insects for the presence of Cry protein constitutively expressed in the cytoplasm of plant cells revealed that bugs are not able to acquire cytoplasm contents from the plant cell. In addition, we demonstrate that systemic insecticide circulating inside plants from soil applications contaminates these predators. Our results are discussed in the context of zoophytophagous feeding behaviour exhibited by predatory hemipterans and the use of systemic insecticides for the conservation of natural enemies. This interaction contradicts the concept of ecological selectivity obtained for natural enemies through the placement of systemic insecticide in the soil as a selective method of deploying chemical control and predatory hemipteran conservation within the integrated pest management framework.  相似文献   

10.
Cell-to-cell signaling mediated by a fatty acid diffusible signaling factor (DSF) is central to the regulation of the virulence of Xylella fastidiosa. DSF production by X. fastidiosa is dependent on rpfF and, although required for insect colonization, appears to reduce its virulence to grape. To understand what aspects of colonization of grape are controlled by DSF in X. fastidiosa and, thus, those factors that contribute to virulence, we assessed the colonization of grape by a green fluorescent protein-marked rpfF-deficient mutant. The rpfF-deficient mutant was detected at a greater distance from the point of inoculation than the wild-type strain at a given sampling time, and also attained a population size that was up to 100-fold larger than that of the wild-type strain at a given distance from the point of inoculation. Confocal laser-scanning microscopy revealed that approximately 10-fold more vessels in petioles of symptomatic leaves harbored at least some cells of either the wild type or rpfF mutant when compared with asymptomatic leaves and, thus, that disease symptoms were associated with the extent of vessel colonization. Importantly, the rpfF mutant colonized approximately threefold more vessels than the wild-type strain. Although a wide range of colony sizes were observed in vessels colonized by both the wild type and rpfF mutant, the proportion of colonized vessels harboring large numbers of cells was significantly higher in plants inoculated with the rpfF mutant than with the wild-type strain. These studies indicated that the hypervirulence phenotype of the rpfF mutant is due to both a more extensive spread of the pathogen to xylem vessels and unrestrained multiplication within vessels leading to blockage. These results suggest that movement and multiplication of X. fastidiosa in plants are linked, perhaps because cell wall degradation products are a major source of nutrients. Thus, DSF-mediated cell-to-cell signaling, which restricts movement and colonization of X. fastidiosa, may be an adaptation to endophytic growth of the pathogen that prevents the excessive growth of cells in vessels.  相似文献   

11.
12.
Recent investigations of long-distance transport in plants using non-invasive tracer techniques such as 11C radiolabeling monitored by positron emission tomography (PET) combined with magnetic resonance imaging (MRI) revealed the need of dedicated methods to allow a quantitative data analysis and comparison of such experiments. A mechanistic compartmental tracer transport model is presented, defined by a linear system of partial differential equations (PDEs). This model simplifies the complexity of axial transport and lateral exchanges in the transport pathways of plants (e.g. the phloem) by simulating transport and reversible exchange within three compartments using just a few parameters which are considered to be constant in space and time. For this system of PDEs an analytical solution in Fourier-space was found allowing a fast and numerically precise evaluation. From the steady-state behavior of the model, the system loss (steadily fixed tracer along the transport conduits) was derived as an additional parameter that can be readily interpreted in a physiological way. The presented framework allows the model to be fitted to spatio-temporal tracer profiles including error and sensitivity analysis of the estimated parameters. This is demonstrated for PET data sets obtained from radish, sugar beet and maize plants.  相似文献   

13.
Flavonoid synthesis is modulated by developmental and environmental signals that control the amounts and localization of the diverse flavonoids found in plants. Flavonoids are implicated in regulating a number of physiological processes including UV protection, fertilization, auxin transport, plant architecture, gravitropism and pathogenic and symbiotic interactions with other organisms. Recently we showed that flavonoids can move long distances in plants, which may facilitate these molecules reaching positions in the plant where these processes are regulated. The localised application of selective flavonoids to tt4 mutants such as naringenin, dihydrokaempferol and dihydroquercetin showed that they were taken up at the root tip, mid-root or cotyledons and travelled long distances via cell-to-cell movement to distal tissues and converted to quercetin and kaempferol. In contrast, kaempferol and quercetin do not move long distances. They were taken up only at the root tip and did not move from this position. Here we show the movement of endogenous flavonoids by using reciprocal grafting experiments between tt4 and wild-type seedlings. These results demonstrated that to understand the distribution of flavonoids in Arabidopsis, it is necessary to know where the flavonoid biosynthetic enzymes are made and to understand the mechanisms by which certain flavonoids move from their site of synthesis.Key words: flavonoid movement, reciprocal graft, quercetin, kaempferol, Arabidopsis thaliana, fluorescence, aglyconeFlavonoids are plant secondary metabolites made by the phenylpropanoid pathway. The central biosynthetic pathway is known and in Arabidopsis most of the enzymes in flavonoid synthesis are encoded by single copy genes.1 The isolation of mutants with defects in the genes encoding these flavonoid biosynthetic enzymes has allowed researchers to understand the biochemical complexity of flavonoid synthesis and their biological roles. Flavonoid synthesis is more complex in other species, such as legumes, which produce a greater diversity of flavonoid molecules, and in which gene families encode the key enzymatic branch points of the pathway.2,3The functions of flavonoids were demonstrated using genetic approaches that blocked flavonoid synthesis in Arabidopsis and other species. In Arabidopsis, flavonoids play important roles in UV protection4 and regulate auxin transport and dependent physiological processes, such as gravity responses,57 and lateral root formation.8 In petunia, maize and tomato, pollen without flavonoids is infertile and this phenotype is reversed by flavonoid addition.911 However, the enigma of why flavonoid-deficient Arabidopsis seedlings are fertile has not been resolved.12 Flavonoids appear to interact with Multidrug resistance (MDR)/P-glycoproteins (PGP)/ABC-Type B proteins7 that transport auxin, regulate phosphatases and kinases, and may have regulatory roles as scavengers of reactive oxygen species (reviewed in ref. 13). These results are consistent with a diversity of important functions for flavonoids in plants that require careful control of flavonoid synthesis and localization.We have explored the possibility that flavonoid accumulation in specific locations is also modulated by movement of early intermediates of the flavonoid pathway. Long-distance movement of secondary metabolites is largely unexplored but potentially has profound developmental effects. Grafting experiments conducted in the early 1900s suggested that alkaloids move from the site of manufacture (the root) to the aerial tissue.14 More recent grafting experiments showed that root synthesised metabolites, perhaps carotenoids, regulate shoot development,15,16 flowering inducers travel long distances,17 and phytohormones are translocated (reviewed in ref. 18).We recently showed that flavonoids moved long distances in Arabidopsis using several approaches.19 The roots of Arabidopsis seedlings grown in complete darkness do not accumulate flavonoids5 since expression of early genes encoding enzymes of flavonoid biosynthesis are light dependent.20 Yet, flavonoids accumulate in root tips of seedlings with light-grown shoots and light-shielded roots, consistent with shoot-to-root flavonoid movement. Using fluorescence microscopy, a selective flavonoid stain (diphenyl boric acid 2-amino ethyl ester [DPBA]), and localised aglycone application to transparent testa mutants, we showed that flavonoids accumulated in tissues distal to the application site, indicating that early intermediates in the flavonoid pathway can move long distances. This was confirmed by time-course fluorescence experiments and HPLC. Flavonoid applications to root tips resulted in basipetal movement in epidermal layers, with subsequent fluorescence detected 1 cm from application sites after 1 h. Flavonoid application mid-root or to cotyledons showed movement of flavonoids toward the root tip mainly in vascular tissue. Naringenin, dihydrokaempferol and dihydroquercetin were taken up at the root tip, mid-root or through cotyledons and travelled long distances via cell-to-cell movement to distal tissues followed by conversion to quercetin and kaempferol. In contrast, kaempferol and quercetin were only taken up at the root tip. Uptake of flavonoids at the root tip was inhibited by glybenclamide, a specific inhibitor of ABC type transporters21 suggesting a possible role for transporters of this class in the movement of flavonoids.To show that endogenous flavonoids are capable of long distance movement, we performed reciprocal butt grafting between tt4 and wild-type seedlings.22 In these experiments we asked whether flavonoids moved from wild-type tissues to flavonoid-deficient tissues of tt4. DPBA fluorescence detection was used to detect flavonoid movement into tt4 tissues.19 Seedlings were grafted and grown on filter paper in Petri dishes for 8 d. The seedlings were then transferred to equal parts sand, perlite and vermiculite to avoid the possibility of uptake of pre-existing flavonoids that may be natural soil components. After 14 d, the seedlings were stained with DPBA. When tt4 roots were grafted to tt4 shoots, the samples showed dim greenish autofluorescence in roots and only red chlorophyll fluorescence in the shoot. When either tt4 roots or shoots were grafted onto wild-type shoots or roots, respectively, the tt4 tissues showed bright yellow DPBA fluorescence (Fig. 1). The results of these experiments clearly showed that endogenous flavonoids moved across the graft to the reciprocal tissue. The flavonoid movement is specific to certain tissues, as flavonoids are not transported into the seeds developing on tt4 shoots grafted on wild-type roots, which retain the transparent testa phenotype. Although flavonoids clearly travelled from wild-type root tissue to mutant shoots, they were not capable of complementing the seed colour defect of tt4. In addition, adding naringenin to tt4 plants either to the media, or to the soil, also did not complement the seed colour phenotype in tt4 (data not shown). Recent research by Hsieh and Huang23 may account for this inability to complement seed colouration, as flavonoids in the Brassicaceae end up in the pollen coat rather than the testa. The testa tissue derives from ovular tissue,24 and thus is maternal in origin.Open in a separate windowFigure 1Grafting shows flavonoid movement occurs across grafts. Reciprocal grafting between wild type and tt4 indicated flavonoid movement from the flavonoid producing tissue to the chalcone synthase-deficient tissue. The order of the graft is indicated by the left legend as aerial tissue over root tissue in the graft. Micrographs are DPBA stained tissue excited with 488 nm wavelength. The tt4/tt4 control graft shows no flavonoids are present, even though a wound has occurred on the leaf which generally exacerbates flavonoid fluorescence. Scale bar = 100 µm. Green fluorescence is from kaempferol and gold from quercetin. The red fluorescence is from chlorophyll.The complexity of the flavonoid biosynthetic pathway and the large number of modified flavonoids that can be made through the complex series of glycosylation reactions suggests that distinct flavonoid molecules may have unique function. To fully understand these molecules, it is necessary to dissect the synthesis pathways for these glycosylated flavonoids. Two unnamed flavonoid glycoside mutants isolated in 1998,25 have profound developmental phenotypes, supporting this hypothesis. These mutations resulted in whorled cauline leaves on inflorescences and double the number of rosette leaves. Our lab is in the process of determining if other phenotypes exist in flavonoid mutants.A critical feature of the observations of flavonoid movement is understanding the biological context of this movement. First, a number of recent studies reported physiological functions of flavonoids in roots, ranging from modulation of auxin transport and root gravitropism,58 to nodulation3 and root branching,8 while it is clear that flavonoid synthesis is absent in dark-grown seedlings.5 Yet, for flavonoids to function in roots of plants grown in soil, the light signal and/or flavonoid precursors must travel to the roots. Additionally, transient flavonoid accumulation has been reported in roots reoriented relative to the gravity vector.6 For flavonoids to transiently accumulate at the root tip (at 2 hours after reorientation) and to return to lower levels (within 2 additional hours), suggests that more than flavonoid synthesis is regulated. Perhaps this transient flavonoid accumulation requires localized enzyme activation and transport mechanisms. As flavonoid transport is inhibited by a compound that blocks ABC transporters, which include the newly identified auxin transporters of the MDR/PGP class, perhaps there are connections between flavonoid and auxin transport that allow this transient accumulation. A more detailed understanding of this role of flavonoid movement in controlling plant development awaits additional experimentation.  相似文献   

14.
Cell-to-cell communication is vital to the growth and development of multicellularly structured organisms. Recent studies have demonstrated that plants have an endogenous machinery to transport macromolecules such as proteins and nucleic acids between cells through plasmodesmata. Such transport may be a novel means of cell-to-cell signalling. Here, Biao Ding discusses the mechanisms underlying this newly discovered biological function.  相似文献   

15.
Proteolysis in plants: mechanisms and functions   总被引:32,自引:0,他引:32  
  相似文献   

16.
For many plant species in eastern North America, short observed seed dispersal distances (ranging up to a few tens of meters) fail to explain rapid rates of invasion and migration. This discrepancy points to a substantial gap in our knowledge of the mechanisms by which seeds are dispersed long distances. We investigated the potential for white-tailed deer (Odocoileus virginianus Zimm.), the dominant large herbivore in much of eastern North America, to disperse seeds via endozoochory. This is the first comprehensive study of seed dispersal by white-tailed deer, despite a vast body of research on other aspects of their ecology. More than 70 plant species germinated from deer feces collected over a 1-year period in central New York State, USA. Viable seeds included native and alien herbs, shrubs, and trees, including several invasive introduced species, from the full range of habitat types in the local flora. A mean of >30 seeds germinated per fecal pellet group, and seeds were dispersed during all months of the year. A wide variety of presumed dispersal modes were represented (endo- and exozoochory, wind, ballistic, ant, and unassisted). The majority were species with small-seeded fruits having no obvious adaptations for dispersal, underscoring the difficulty of inferring dispersal ability from diaspore morphology. Due to their broad diet, wide-ranging movements, and relatively long gut retention times, white-tailed deer have tremendous potential for effecting long-distance seed dispersal via ingestion and defecation. We conclude that white-tailed deer represent a significant and previously unappreciated vector of seed dispersal across the North American landscape, probably contributing an important long-distance component to the seed shadows of hundreds of plant species, and providing a mechanism to help explain rapid rates of plant migration.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

17.
CAPRICE (CPC), a small, R3-type Myb-like protein, is a positive regulator of root hair development in Arabidopsis. Cell-to-cell movement of CPC is important for the differentiation of epidermal cells into trichoblasts (root hair cells). CPC is transported from atrichoblasts (hairless cells), where it is expressed, to trichoblasts, and generally accumulates in their nuclei. Using truncated versions of CPC fused to GFP, we identified a signal domain that is necessary and sufficient for CPC cell-to-cell movement. This domain includes the N-terminal region and a part of the Myb domain. Amino acid substitution experiments indicated that W76 and M78 in the Myb domain are critical for targeted transport, and that W76 is crucial for the nuclear accumulation of CPC:GFP. To evaluate the tissue-specificity of CPC movement, CPC:GFP was expressed in the stele using the SHR promoter and in trichoblasts using the EGL3 promoter. CPC:GFP was able to move from trichoblasts to atrichoblasts but could not exit from the stele, suggesting the involvement of tissue-specific regulatory factors in the intercellular movement of CPC. Analyses with a secretion inhibitor, Brefeldin A, and with an rhd3 mutant defective in the secretion process in root epidermis suggested that intercellular CPC movement is mediated through plasmodesmata. Furthermore, the fusion of CPC to tandem-GFPs defined the capability of CPC to increase the size exclusion limit of plasmodesmata.  相似文献   

18.
The quantitative detection of oligomeric nucleic acids including short double-stranded RNA in cells and tissues becomes increasingly important. Here, we describe a method for the detection of siRNA in extracts prepared from mammalian cells, which is based on liquid hybridization with a 32P-labelled probe followed by a nuclease protection step. The limit of detection of absolute amounts of siRNA is in the order of 10–100 amol. This methodology is suited to quantitatively follow the spontaneous uptake of siRNA by mammalian cells, i.e. without the use of carrier substances. This protocol may also be used to detect extremely low amounts of other kinds of short nucleic acids, including antisense oligonucleotides.  相似文献   

19.
Phototropism: mechanisms and ecological implications   总被引:9,自引:5,他引:9  
Abstract. Phototropism in seed plants, either etiolated or de-etiolated, is mediated by unidentified photoreceptor(s) sensitive to blue and near-UV regions of the light spectrum. Green plants may have an additional phototropic system sensitive to red light. Fluence-response studies of the blue light-sensitive phototropism, initially made on oat coleoptiles, have indicated the occurrence of multiple response types. Of those, two are found to be general: the first pulse-induced positive phototropism (fPIPP), or the so-called first positive curvature, and the time-dependent phototropism (TDP) or the second positive curvature. The fPIPP, elicited by a pulse stimulus shorter than a few minutes, is characterized by a bell-shaped fluence-response curve and the validity of reciprocity. The TDP, elicited by prolonged irradiation, is characterized by its dependence on the exposure time and the invalidity of reciprocity. Studies made on these two response types have revealed the following: (1) plants acquire directional light information for phototropism by sensing internal light gradients created by light scattering and absorption; (2) phototropism results from redistribution of growth, i.e. inhibition on the irradiated side and compensating stimulation on the shaded side; (3) lateral movement of growth regulators, the principle of the Cholodny-Went theory, can account for the growth redistribution, and auxin is clearly the mediating regulator in maize coleoptiles. This review further describes some mechanistic implications of fPIPP. Experimental results indicate that (1) fPIPP is mediated by a single step of photoreaction, (2) the responsiveness, reflected in the height of the fluenceresponse curve, is reduced by pre-irradiation with blue light and recovers gradually afterward, and (3) the light sensitivity, reflected in the position of the fluence-response curve along the log fluence axis, is also reduced by the pre-irradiation and recovers gradually. Analyses of these results, based on kinetic models, suggest that the bell-shaped fluence-response curve is caused by the difference in the amounts of a photoproduct between irradiated and shaded sides, and that fPIPP represents a mechanism of TDP. It is also indicated that phytochrome in the red-absorbing form exerts two separate effects on phototropism: reduction of the light sensitivity and enhancement of the responsiveness. Along with the discussion of the mechanisms of phototropism, their ecological implications are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号