首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this Letter, we investigated the binding properties towards nucleic acids of a thymine-functionalized oligolysine, composed of nucleobase-bearing amino acid moieties and underivatized l-lysine residues alternate in the backbone. The basic nucleopeptide proved to be well soluble in water and able to interact with both DNA and RNA, as suggested by circular dichroism, UV and surface plasmon resonance studies performed on the thymine-containing oligomer with both adenine-containing DNA (dA12) and RNA (rA12 and poly rA) molecules. In both cases the thymine-functionalized oligolysine was proven to form complexes characterized by a 1:1 T/A stoichiometric ratio, as evidenced by CD titration. UV melting experiments revealed that the complex formed between the homothymine oligolysine and rA12 RNA was more stable than the complex with dA12 DNA probably due to the additional H-bonding of the 2′-OH groups in RNA, that reinforces the overall interaction with the nucleopeptide. Finally, human serum stability assays were conducted on the thymine-bearing nucleopeptide which showed a half-life of 45 min.  相似文献   

2.

Mitoapocynin is a triphenylphosphonium conjugated derivative of apocynin that specifically locates to the mitochondria. It has been developed as a mitochondrially targeted therapeutic antioxidant. We attempted to attenuate the mitochondrial ROS induced in H9c2 cardiac myoblast cells treated with norepinephrine. Mitoapocynin was a poor quencher of total ROS as detected by the fluoroprobe DCFH-DA. Using mitochondrial superoxide specific probe MitoSoxRed, we found that 5–10 µM mitoapocynin itself induces superoxide over and above that is generated by the norepinephrine treatment. A supposedly control molecule to mitoapocynin, the synthetic compound PhC11TPP, having the triphenylphosphonium group and a benzene moiety with C11 aliphatic chain spacer was also found to be a robust inducer of mitochondrial ROS. Subsequent assays with several cell lines viz., NIH3T3, HEK293, Neuro2A, MCF-7 and H9c2, showed that prolonged exposure to mitoapocynin induces cell death by apoptosis that can be partially prevented by the general antioxidant N-acetyl cysteine. Analyses of mitochondrial electron transport complexes by Blue Native Polyacrylamide gel electrophoresis showed that both mitoapocynin and PhC11TPP disrupt the mitochondrial Complex I and V, and in addition, PhC11TPP also damages the Complex IV. Our data thus highlights the limitations of the therapeutic use of mitoapocynin as an antioxidant.

  相似文献   

3.
Successful cancer gene therapy depends on the development of non-toxic, efficient, tumor cell- specific systemic gene delivery systems. Our laboratory has developed a systemically administered, ligand–liposome complex that can effectively and preferentially deliver its therapeutic payload to both primary and metastatic tumors. To further improve the transfection efficiency of this targeting complex, a synthetic pH-sensitive histidylated oligolysine K[K(H)KKK]5-K(H)KKC (HoKC), designed to aid in endosomal escape and condensation of DNA, was included in the complex. The presence of HoKC increased the in vitro transfection efficiency over that of the original complex. Moreover, no increase in cytotoxicity was observed due to the presence of the HoKC peptide. In a DU145 human prostate cancer xenograft tumor model in athymic nude mice, inclusion of the HoKC peptide did not interfere with the tumor targeting specificity of the i.v. administered ligand/liposome/DNA complex. Most importantly, the level of transgene expression was significantly elevated in the tumors, but not in the normal tissue in those animals receiving the complex incorporating HoKC. The in vivo enhancement of transfection efficiency by this modified gene delivery vehicle could lead to a reduction in the number of administrations required for antitumor efficacy.  相似文献   

4.
Interactions of wild-type and Tyr83 mutant (Y83F, Y83S, Y83L, and Y83H) plastocyanins (PCs) with lysine peptides as models for the PC interacting site of cytochrome f have been studied by absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopies and electrochemical measurements. The spectral and electrochemical properties of PCs corresponded well with each other; species having a longer wavelength maximum for the S(Cys) pi --> Cu 3d(x)()()2(-)(y)()()2 charge transfer (CT) band observed around 600 nm and a stronger intensity for the 460-nm absorption band exhibited stronger intensities for the positive Met --> Cu 3d(x)()()2(-)(y)()()2 and negative His pi(1) --> Cu 3d(x)()()2(-)(y)()()2 circular dichroism (CD) bands at about 420 and 470 nm, respectively, a lower average nu(Cu)(-)(S) frequency, a smaller |A( parallel)| EPR parameter, and a higher redox potential, properties all related to a weaker Cu-S(Cys) bond and a more tetrahedral planar geometry for the Cu site. Similarly, on oligolysine binding to wild-type and several Tyr83 mutant PCs, a longer absorption maximum for the 600-nm CT band, a stronger intensity for the 460-nm absorption band, stronger 420-nm positive and 470-nm negative CD bands, and a lower average nu(Cu)(-)(S) frequency were observed, suggesting that PC assumes a slight more tetrahedral geometry on binding of oligolysine. Since changes were observed for both wild-type and Tyr83 mutant PCs, the structural change due to binding of oligolysine to PC may not be transmitted through the path of Tyr83-Cys84-copper by a cation-pi interaction which is proposed for electron transfer.  相似文献   

5.
Alkyl tributylphosphonium and triphenylphosphonium derivatives as well as tetraphenylphosphonium were first studied as inhibitors of acetylcholinesterase of human blood erythrocytes and butyrylcholinesterase of horse blood serum. The inhibition is reversible, of mixed type, with a different contribution of competitive and uncompetitive components. The value of the inhibitory effect is essentially dependent on the structure of phosphonium compounds, especially in experiments with butyrylcholinesterase: allyltriphenylphosphonium is 290 times as strong enzyme inhibitor as methyltributylphosphonium. Hexyltributylphosphonium is identical to hexyltributylammonium in both the pattern and efficiency of the inhibitory action on cholinesterases.  相似文献   

6.
Context: Nanocarrier-based strategies to achieve delivery of bioactives specifically to the mitochondria are being increasingly explored due to the importance of mitochondria in critical cellular processes.

Objective: To test the ability of liposomes modified with newly synthesized triphenylphosphonium (TPP)–phospholipid conjugates and to test their use in overcoming the cytotoxicity of stearyl triphenylphosphonium (STPP)-modified liposomes when used for delivery of therapeutic molecules to the mitochondria.

Methods: TPP–phospholipid conjugates with the dioleoyl, dimyristoyl or dipalmitoyl lipid moieties were synthesized and liposomes were prepared with these conjugates in a 1?mol% ratio. The subcellular distribution of the liposomes was tested by confocal microscopy. Furthermore, the liposomes were tested for their effect on cell viability using a MTS assay, on cell membrane integrity using a lactate dehydrogenase assay and on mitochondrial membrane integrity using a modified JC-1 assay.

Results: The liposomes modified with the new TPP–phospholipid conjugates exhibited similar mitochondriotropism as STPP-liposomes but they were more biocompatible as compared to the STPP liposomes. While the STPP-liposomes had a destabilizing effect on cell and mitochondrial membranes, the liposomes modified with the TPP–phospholipid conjugates did not demonstrate any such effect on biomembranes.

Conclusions: Using phospholipid anchors in the synthesis of TPP–lipid conjugates can provide liposomes that exhibit the same mitochondrial targeting ability as STPP but with much higher biocompatibility.  相似文献   

7.
We studied the antischistosomal activity of betulin, betulinic acid and its 9 triphenylphosphonium derivatives characterized by a covalently linkage of the hydrophobic fragment of triterpenoid at C(2)- or C(30)-position with the triphenylphosphonium moiety via a hydrocarbon bridge. The triphenylphosphonium salts showed in vitro antischistosomal activity against newly transformed schistosomula (NTS) and adult worms of Schistosoma mansoni at low micromolar concentrations. In contrast betulin and betulinic acid were inactive against NTS and adult S. mansoni. Of the 9 triphenylphosphonium derivatives tested, the allyl salts 10 (IC50 of 0.76 μg/mL) and 11 (IC50 of 0.64 μg/mL) demonstrated the highest antischistosomal activity against adult S. mansoni. Low worm burden reductions of 22% were observed in vivo for these two compounds. In conclusion, triphenylphosphonium derivatives were obtained from available natural betulin by simple transformations, rendering it practical and useful for large scale application. However, further structural modifications are necessary to translate the promising antischistosomal in vitro activities into in vivo.  相似文献   

8.
We studied the effectiveness of trilysine (Lys3), tetralysine (Lys4), pentalysine (Lys5), and poly-l-lysine (PLL) (MW 50000) on lambda-DNA nanoparticle formation and characterized the size, shape, and stability of nanoparticles. Light scattering experiments showed EC50 (lysine concentration at 50% DNA compaction) values of approximately 0.0036, 2, and 20 micromol/L, respectively, for PLL, Lys5, and Lys4 at 10 mM [Na+]. Plots of log EC50 versus log [Na+] showed positive slopes of 1.09 and 1.7, respectively, for Lys4 and Lys5 and a negative slope of -0.1 for PLL. Hydrodynamic radii of oligolysine condensed particles increased (48-173 nm) with increasing [Na+], whereas no significant change occurred to nanoparticles formed with PLL. There was an increase in the size of nanoparticles formed with Lys5 at >40 degrees C, whereas no such change occurred with PLL. The DNA melting temperature increased with oligolysine concentration. These results indicate distinct differences in the mechanism(s) by which oligolysines and PLL provoke DNA condensation to nanoparticles.  相似文献   

9.
Peroxidation of cardiolipin in mitochondria is essential for the execution of apoptosis. We suggested that integration of oleic acid into cardiolipin generates non-oxidizable cardiolipin species hence protects cells against apoptosis. We synthesized mitochondria-targeted triphenylphosphonium oleic acid ester. Using lipidomics analysis we found that pretreatment of mouse embryonic cells with triphenylphosphonium oleic acid ester resulted in decreased contents of polyunsaturated cardiolipins and elevation of its species containing oleic acid residues. This caused suppression of apoptosis induced by actinomycin D. Triacsin C, an inhibitor of acyl-CoA synthase, blocked integration of oleic acid into cardiolipin and restored cell sensitivity to apoptosis.  相似文献   

10.
Polycations with varying chemistries and architectures have been synthesized and used in DNA transfection. In this paper we connect poly-L-lysine (PLL) architecture to DNA-binding strength, and in turn transfection efficiency, since experiments have shown that graft-type oligolysine architectures [e.g., poly(cyclooctene-g-oligolysine)] exhibit higher transfection efficiency than linear PLL. We use atomistic molecular dynamics simulations to study structural and thermodynamic effects of polycation-DNA binding for linear PLL and grafted oligolysines of varying graft lengths. Structurally, linear PLL binds in a concerted manner, while each oligolysine graft binds independently of its neighbors in the grafted architecture. Additionally, the presence of a hydrophobic backbone in the grafted architecture weakens binding to DNA compared to linear PLL. The binding free energy varies nonmonotonically with the graft length primarily due to entropic contributions. The binding free energy normalized to the number of bound amines is similar between the grafted and linear architectures at the largest (Poly5) and smallest (Poly2) graft length and stronger than the intermediate graft lengths (Poly3 and Poly4). These trends agree with experimental results that show higher transfection efficiency for Poly3 and Poly4 grafted oligolysines than for Poly5, Poly2, and linear PLL.  相似文献   

11.
Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria.  相似文献   

12.
At very low ionic strength (gamma less than 0.05) oligohomopolymers of lysine cause lateral association of muscle F-actin filaments into ordered structures which appear at low magnification in electron-micrographs as rigid needles. At higher magnification these aggregates display regular quasicrystalline patterns. The structures dissolve reversibly when the ionic strength is raised suggesting that F-actin filaments are crosslinked by oligolysine due to electrostatic forces.  相似文献   

13.
Fujita Y  Moyle PM  Hieu S  Simerska P  Toth I 《Biopolymers》2008,90(5):624-632
We applied native chemical ligation (NCL) method to the synthesis of highly pure lipid-core peptide (LCP) vaccines to attach various peptide epitopes. In the case of the synthesis of LCP vaccine with two different peptide epitopes, LCP moieties having two free Cys and two protected Cys derivatives (S-acetamidemethyl-Cys, (Cys(Acm)), N-methylsulfonylethyloxycarbonyl-Cys (Msc-Cys), or 1,3-thiazolidine-4-carboxylic acid (Thz)) on oligolysine branches were prepared in order to couple two different epitopes by stepwise NCL. It was found that the difficulty in NCL of first two peptide antigen was associated with the steric hindrance. Using Thz instead of Cys(Acm) and Msc-Cys was important to reduce the steric hindrance and improve NCL yield.  相似文献   

14.
Peptide nucleic acids (PNAs) have stronger affinity and greater specificity than do oligonucleotides for binding to DNA and RNA and, as such, have potential utility as probes in molecular biology applications. In this study, a novel approach for labeling the PNA with radioiodine that avoided solubility issues and poor labeling encountered when trying to radioiodinate PNAs directly in solution was developed. For this approach, a purpose-designed prosthetic group that incorporated both a radioiodinatable tyrosine and a triphenylphosphonium (TPP) moiety was synthesized. The latter is an organic cation that combines the properties of good solubility in both aqueous and organic solvents with a strong retention by reverse phase HPLC. Following radioiodination of the TPP-based prosthetic group in phosphate buffer, the prosthetic group was purified and coupled to the terminal amine of 15-mer PNA on the solid phase resin. After cleavage and deprotection of the PNA from the resin, the presence of the TPP group resulted in a clean separation of radioiodinated PNA from unlabeled PNA, yielding a high-specific activity probe in a single HPLC run. As an example of a potential molecular biology application of the resultant (125)I-labeled PNA probe, it was used to detect mRNA for the Lcn2 gene in Northern blotting.  相似文献   

15.
The use of dendritic cells (DC) for the development of therapeutic cancer vaccines is attractive because of their unique ability to present tumor epitopes via the MHC class I pathway to induce cytotoxic CD8+ T lymphocyte responses. C-Type membrane lectins, DC-SIGN and the mannose receptor (MR), present on the DC surface, recognize oligosaccharides containing mannose and/or fucose and mediate sugar-specific endocytosis of synthetic oligolysine-based glycoclusters. We therefore asked whether a glycotargeting approach could be used to induce uptake and presentation of tumor antigens by DC. To this end, we designed and synthesized glycocluster conjugates containing a CD8+ epitope of the Melan-A/Mart-1 melanoma antigen. These glycocluster-Melan-A conjugates were obtained by coupling glycosynthons: oligosaccharyl-pyroglutamyl-beta-alanine derivatives containing either disaccharides, a dimannoside (Manalpha-6Man) or lactoside, or a Lewis oligosaccharide, to Melan-A 16-40 peptide comprising the 26-35 HLA-A2 restricted T cell epitope, extended with an oligolysine stretch at the C-terminal end. We showed by confocal microscopy and flow cytometry that fluorescent-labeled Melan-A glycoclusters containing either dimannoside or Lewis oligosaccharide were taken up by DC and concentrated in acidic vesicles; conversely lactoside glycopeptides were not at all taken up. Furthermore, using surface plasmon resonance, we showed that dimannoside and Lewis-Melan-A conjugates bind MR and DC-SIGN with high affinity. DC loaded with these conjugates, but not with the lactose-Melan-A conjugate, led to an efficient presentation of the Melan-A epitope eliciting a CD8+ T-lymphocyte response. These data suggest that synthetically designed glycocluster-tumor antigen conjugates may induce antigen cross-presentation by DC and represent a promising tool for the development of tumor vaccines.  相似文献   

16.
The mitochondria-targeted drugs mitoquinone (Mito-Q) and mitovitamin E (MitoVit-E) are a new class of antioxidants containing the triphenylphosphonium cation moiety that facilitates drug accumulation in mitochondria. In this study, Mito-Q (ubiquinone attached to a triphenylphosphonium cation) and MitoVit-E (vitamin E attached to a triphenylphosphonium cation) were used. The aim of this study was to test the hypothesis that mitochondria-targeted antioxidants inhibit peroxide-induced oxidative stress and apoptosis in bovine aortic endothelial cells (BAEC) through enhanced scavenging of mitochondrial reactive oxygen species, thereby blocking reactive oxygen species-induced transferrin receptor (TfR)-mediated iron uptake into mitochondria. Glucose/glucose oxidase-induced oxidative stress in BAECs was monitored by oxidation of dichlorodihydrofluorescein that was catalyzed by both intracellular H(2)O(2) and transferrin iron transported into cells. Pretreatment of BAECs with Mito-Q (1 microM) and MitoVit-E (1 microM) but not untargeted antioxidants (e.g. vitamin E) significantly abrogated H(2)O(2)- and lipid peroxide-induced 2',7'-dichlorofluorescein fluorescence and protein oxidation. Mitochondria-targeted antioxidants inhibit cytochrome c release, caspase-3 activation, and DNA fragmentation. Mito-Q and MitoVit-E inhibited H(2)O(2)- and lipid peroxide-induced inactivation of complex I and aconitase, TfR overexpression, and mitochondrial uptake of (55)Fe, while restoring the mitochondrial membrane potential and proteasomal activity. We conclude that Mito-Q or MitoVit-E supplementation of endothelial cells mitigates peroxide-mediated oxidant stress and maintains proteasomal function, resulting in the overall inhibition of TfR-dependent iron uptake and apoptosis.  相似文献   

17.
Although targeting of cancer cells using drug-delivering nanocarriers holds promise for improving therapeutic agent specificity, the strategy of maximizing ligand affinity for receptors overexpressed on cancer cells is suboptimal. To determine design principles that maximize nanocarrier specificity for cancer cells, we studied a generalized kinetics-based theoretical model of nanocarriers with one or more ligands that specifically bind these overexpressed receptors. We show that kinetics inherent to the system play an important role in determining specificity and can in fact be exploited to attain orders of magnitude improvement in specificity. In contrast to the current trend of therapeutic design, we show that these specificity increases can generally be achieved by a combination of low rates of endocytosis and nanocarriers with multiple low-affinity ligands. These results are broadly robust across endocytosis mechanisms and drug-delivery protocols, suggesting the need for a paradigm shift in receptor-targeted drug-delivery design.  相似文献   

18.
Mitochondrial dysfunction plays a crucial role in the macroautophagy/autophagy cascade. In a recently published study Sun et al. described the induction of autophagy by the membranophilic triphenylphosphonium (TPP)-based cation 10-(6′-ubiquinonyl) decyltriphenylphosphonium (MitoQ) in HepG2 cells (Sun C, et al. “MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential [PMMP]”, Autophagy 2017, 13:730-738.). Sun et al. suggested that MitoQ adsorbed to the inner mitochondrial membrane with its cationic moiety remaining in the intermembrane space, adding a large number of positive charges and establishing a “pseudo-mitochondrial membrane potential,” which blocked the ATP synthase. Here we argue that the suggested mechanism for generation of the “pseudo-mitochondrial membrane potential” is physically implausible and contradicts earlier findings on the electrophoretic displacements of membranophilic cations within and through phospholipid membranes. We provide evidence that TPP-cations dissipated the mitochondrial membrane potential in HepG2 cells and that the induction of autophagy in carcinoma cells by TPP-cations correlated with the uncoupling of oxidative phosphorylation. The mild uncoupling of oxidative phosphorylation by various mitochondria-targeted penetrating cations may contribute to their reported therapeutic effects via inducing both autophagy and mitochondria-selective mitophagy.  相似文献   

19.
The role of hydrogen peroxide (H(2)O(2)) in mitochondrial oxidative damage and redox signaling is poorly understood, because it is difficult to measure H(2)O(2) in vivo. Here we describe a method for assessing changes in H(2)O(2) within the mitochondrial matrix of living Drosophila. We use a ratiometric mass spectrometry probe, MitoB ((3-hydroxybenzyl)triphenylphosphonium bromide), which contains a triphenylphosphonium cation component that drives its accumulation within mitochondria. The arylboronic moiety of MitoB reacts with H(2)O(2) to form a phenol product, MitoP. On injection into the fly, MitoB is rapidly taken up by mitochondria and the extent of its conversion to MitoP enables the quantification of H(2)O(2). To assess MitoB conversion to MitoP, the compounds are extracted and the MitoP/MitoB ratio is quantified by liquid chromatography-tandem mass spectrometry relative to deuterated internal standards. This method facilitates the investigation of mitochondrial H(2)O(2) in fly models of pathology and metabolic alteration, and it can also be extended to assess mitochondrial H(2)O(2) production in mouse and cell culture studies.  相似文献   

20.
Recent observations in cell culture provide evidence that negatively charged glycosaminoglycans (GAGs) at the surface of biological cells bind cationic cell-penetrating compounds (CPCs) and cluster during CPC binding, thereby contributing to their endocytotic uptake. The GAG binding and clustering occur in the low-micromolar concentration range and suggest a tight interaction between GAGs and CPCs, although the relation between binding affinity and specificity of this interaction remains to be investigated. We therefore measured the GAG binding and clustering of various mono- and multivalent CPCs such as DNA transfection vectors (polyethylenimine; 1,2-dioleoyl-3-trimethylammonium-propane), amino acid homopolymers (oligoarginine; oligolysine), and cell-penetrating peptides (Penetratin; HIV-1 Tat) by means of isothermal titration calorimetry and dynamic light scattering. We find that these structurally diverse CPCs share the property of GAG binding and clustering. The binding is very tight (microscopic dissociation constants between 0.34 and 1.34 μM) and thus biologically relevant. The hydrodynamic radius of the resulting aggregates ranges from 78 nm to 586 nm, suggesting that they consist of numerous GAG chains cross-linked by CPCs. Likewise, the membrane-permeant monovalent cation acridine orange leads to GAG binding and clustering, in contrast to its membrane-impermeant structural analogs propidium iodide and ethidium bromide. Because the binding and clustering of GAGs were found to be a common denominator of all CPCs tested, these properties might be helpful to identify further CPCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号