首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The role of rafts in the fibrillization and aggregation of prions   总被引:4,自引:0,他引:4  
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrP(C)) to the disease-specific form (PrP(Sc)). The transition from PrP(C) to PrP(Sc) involves a major conformational change, resulting in amorphous aggregates and/or fibrillar amyloid deposits. Here several lines of evidence implicating membranes in the conversion of PrP are reviewed with a particular emphasis on the role of lipid rafts in the conformational transition of prion proteins. New correlations between in vitro biophysical studies and findings from cell biology work on the role of rafts in prion conversion are highlighted and a mechanism for the role of rafts in prion conversion is proposed.  相似文献   

2.
The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.  相似文献   

3.
The conformational conversion of the cellular form of the prion protein (PrP C) into the infectious form (PrP Sc) and the proteolytic processing of the amyloid-beta (Abeta) peptide are central pathogenetic events in the prion diseases and Alzheimer's disease, respectively. Cholesterol- and sphingolipid-rich lipid rafts have emerged as important sites for the conversion of PrP C into PrP Sc, and for the proteolytic production, degradation and aggregation of Abeta. Here, we discuss these findings and their implications for our understanding of these disease processes. In addition, the potential for rafts as sites for therapeutic intervention in prion diseases and Alzheimer's disease is considered.  相似文献   

4.
A key molecular event in prion diseases is the conversion of PrP (prion protein) from its normal cellular form (PrP(c)) into the disease-specific form (PrP(Sc)). The transition from PrP(c) to PrP(Sc) involves a major conformational change, resulting in amorphous aggregates and/or fibrillar amyloid deposits. Here, we review several lines of evidence implicating membranes in the conversion of PrP, and summarize recent results from our own work on the role of lipid membranes in conformational transitions of prion proteins. By establishing new correlations between in vivo biological findings with in vitro biophysical results, we propose a role for lipid rafts in prion conversion, which takes into account the structural heterogeneity of PrP in different lipid environments.  相似文献   

5.
Polymorphic basic residues near the C terminus of the prion protein (PrP) in humans and sheep appear to protect against prion disease. In heterozygotes, inhibition of prion formation appears to be dominant negative and has been simulated in cultured cells persistently infected with scrapie prions. The results of nuclear magnetic resonance and mutagenesis studies indicate that specific substitutions at the C-terminal residues 167, 171, 214, and 218 of PrP(C) act as dominant-negative, inhibitors of PrP(Sc) formation (K. Kaneko et al., Proc. Natl. Acad. Sci. USA 94:10069-10074, 1997). Trafficking of substituted PrP(C) to caveaola-like domains or rafts by the glycolipid anchor was required for the dominant-negative phenotype; interestingly, amino acid replacements at multiple sites were less effective than single-residue substitutions. To elucidate which domains of PrP(C) are responsible for dominant-negative inhibition of PrP(Sc) formation, we analyzed whether N-terminally truncated PrP(Q218K) molecules exhibited dominant-negative effects in the conversion of full-length PrP(C) to PrP(Sc). We found that the C-terminal domain of PrP is not sufficient to impede the conversion of the full-length PrP(C) molecule and that N-terminally truncated molecules (with residues 23 to 88 and 23 to 120 deleted) have reduced dominant-negative activity. Whether the N-terminal region of PrP acts by stabilizing the C-terminal domain of the molecule or by modulating the binding of PrP(C) to an auxiliary molecule that participates in PrP(Sc) formation remains to be established.  相似文献   

6.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

7.
The prion protein (PrP) in a living cell is associated with cellular membranes. However, all previous biophysical studies with the recombinant prion protein have been performed in an aqueous solution. To determine the effect of a membrane environment on the conformational structure of PrP, we studied the interaction of the recombinant human prion protein with model lipid membranes. The protein was found to bind to acidic lipid-containing membrane vesicles. This interaction is pH-dependent and becomes particularly strong under acidic conditions. Spectroscopic data show that membrane binding of PrP results in a significant ordering of the N-terminal part of the molecule. The folded C-terminal domain, on the other hand, becomes destabilized upon binding to the membrane surface, especially at low pH. Overall, these results show that the conformational structure and stability of the recombinant human PrP in a membrane environment are substantially different from those of the free protein in solution. These observations have important implications for understanding the mechanism of the conversion between the normal (PrP(C)) and pathogenic (PrP(Sc)) forms of prion protein.  相似文献   

8.
In prion diseases, the cellular form of the prion protein, PrPC, undergoes a conformational conversion to the infectious isoform, PrPSc. PrPC associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI) anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs). We show that heparin displaces PrPC from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrPC. We then utilised a transmembrane-anchored form of PrP (PrP-TM), which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrPC to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrPC from rafts, promoting its endocytosis. Glypican-1 and PrPC colocalised on the cell surface and both PrPC and PrPSc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrPSc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrPC on the β-secretase cleavage of the Alzheimer''s amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrPC and PrPSc in lipid rafts.  相似文献   

9.
Conversion of the cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)), the key molecular event in the pathogenesis of prion diseases, is accompanied by a conformational transition of alpha-helix into beta-sheet structures involving alpha-helix 1 (alpha1) domain from residues 144 to 154 of the protein. Reduction and alkylation of PrP(C) have been found to inhibit the conversion of PrP(C) into PrP(Sc) in vitro. Here we report that while antibody affinity of epitopes in the N- and C-terminal domains remained unchanged, reduction and alkylation of the PrP molecule induced complete concealment of an epitope in alpha1 for anti-PrP antibody 6H4 that is able to cure prion infection in the cell model. Mass spectrometric analysis of recombinant PrP showed that the alkylation reaction takes place at reduced cysteines but no modification was observed in this cryptic epitope. Our study suggests that reduction and alkylation result in local or global rearrangement of PrP tertiary structure that is maintained in both liquid and solid phases. The implications in the conversion of PrP(C) into PrP(Sc) and the therapeutics of prion diseases are discussed.  相似文献   

10.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

11.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrP(Sc). We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.  相似文献   

12.
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.  相似文献   

13.
During prion diseases the normal prion protein PrP(C) is refolded into an abnormal conformer PrP(Sc). We have studied the PrP(Sc) inhibiting activity of a library of synthetic heparan mimetic (HM) biopolymers. HMs are chemically derived dextrans obtained by successive substitutions with carboxymethyl, benzylamide, and sulfate groups on glucose residues. Some HMs eliminated PrP(Sc) from prion-infected cells after a 5 day course at 100 ng/ml and were 15 x potent than pentosan sulfate in this system. The anti-PrP(Sc) activity of HMs correlated with the degree of sulfation but was increased by benzylamidation. HMs did not reduce the synthesis of PrP(C) nor its attachment to lipid rafts, but instead blocked its conversion into PrP(Sc). The anti-PrP(Sc) HMs also prevented the uptake of prion rods by cultured cells. HMs may thus block the interaction of PrP(Sc) with a putative cellular receptor, possibly heparan sulfate. HMs provide an attractive chemical approach for the synthesis of TSE therapeutic and prophylactic reagents.  相似文献   

14.
The association of the prion protein (PrP) with sphingolipid- and cholesterol-rich lipid rafts is instrumental in the pathogenesis of the neurodegenerative prion diseases. Although the glycosylphosphatidylinositol (GPI) anchor is an exoplasmic determinant of raft association, PrP remained raft-associated in human neuronal cells even when the GPI anchor was deleted or substituted for a transmembrane anchor indicating that the ectodomain contains a raft localization signal. The raft association of transmembrane-anchored PrP occurred independently of Cu(II) binding as it failed to be abolished by either deletion of the octapeptide repeat region (residues 51-90) or treatment of cells with a Cu(II) chelator. Raft association of transmembrane-anchored PrP was only abolished by the deletion of the N-terminal region (residues 23-90) of the ectodomain. This region was sufficient to confer raft localization when fused to the N terminus of a non-raft transmembrane-anchored protein and suppressed the clathrin-coated pit localization signal in the cytoplasmic domain of the amyloid precursor protein. These data indicate that the N-terminal region of PrP acts as a cellular raft targeting determinant and that residues 23-90 of PrP represent the first proteinaceous raft targeting signal within the ectodomain of a GPI-anchored protein.  相似文献   

15.
Prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into a disease related, protease-resistant isoform (PrP(Sc)). In these studies, a cell painting technique was used to introduce PrP(C) to prion-infected neuronal cell lines (ScGT1, ScN2a, or SMB cells). The addition of PrP(C) resulted in increased PrP(Sc) formation that was preceded by an increase in the cholesterol content of cell membranes and increased activation of cytoplasmic phospholipase A(2) (cPLA(2)). In contrast, although PrP(C) lacking one of the two acyl chains from its glycosylphosphatidylinositol (GPI) anchor (PrP(C)-G-lyso-PI) bound readily to cells, it did not alter the amount of cholesterol in cell membranes, was not found within detergent-resistant membranes (lipid rafts), and did not activate cPLA(2). It remained within cells for longer than PrP(C) with a conventional GPI anchor and was not converted to PrP(Sc). Moreover, the addition of high amounts of PrP(C)-G-lyso-PI displaced cPLA(2) from PrP(Sc)-containing lipid rafts, reduced the activation of cPLA(2), and reduced PrP(Sc) formation in all three cell lines. In addition, ScGT1 cells treated with PrP(C)-G-lyso-PI did not transmit infection following intracerebral injection to mice. We propose that that the chemical composition of the GPI anchor attached to PrP(C) modified the local membrane microenvironments that control cell signaling, the fate of PrP(C), and hence PrP(Sc) formation. In addition, our observations raise the possibility that pharmacological modification of GPI anchors might constitute a novel therapeutic approach to prion diseases.  相似文献   

16.
Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrP(C), to the disease-associated form, PrP(Sc), through mechanisms that remain elusive but which require either direct or indirect interaction between PrP(C) and PrP(Sc) isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrP(C) or to provide a scaffold ensuring correct alignment of PrP(C) and PrP(Sc) during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF) from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na(+)/K(+)-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na(+)/K(+)-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrP(C) and Na(+)/K(+)-ATPase have previously been reported in astrocytes, our data highlight this molecule as a key link between PrP function, dysfunction and misfolding.  相似文献   

17.
During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrP(Sc)) of the host encoded prion protein (PrP(C)) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrP(C) and PrP(Sc) have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrP(C) to PrP(Sc), but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP.  相似文献   

18.
Prions are defined as infectious agents that comprise only proteins and are responsible for transmissible spongiform encephalopathies (TSEs)--fatal neurodegenerative diseases that affect humans and other mammals and include Creutzfeldt-Jacob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. Prions have been proposed to arise from the conformational conversion of the cellular prion protein PrP(C) to a misfolded form termed PrP(Sc) that precipitates into aggregates and fibrils. The conversion process might be triggered by interaction of the infectious form with the cellular form or it might result from a mutation in the gene encoding PrP(C). Exactly how and where in the cell the interaction and the conversion of PrP(C) to PrP(Sc) occur, however, remain controversial. Recent studies have shed light on the intracellular trafficking of PrP(C), the role of protein mis-sorting and the cellular factors that are thought to be required for the conformational conversion of prion proteins.  相似文献   

19.
Transmissible spongiform encephalopathies form a group of fatal neurodegenerative disorders that have the unique property of being infectious, sporadic, or genetic in origin. Although some doubts remain on the nature of the responsible agent of these diseases, it is clear that a protein called PrP(Sc) (which stands for the scrapie isoform of the prion protein) has a central role in their pathology. PrP(Sc) represents a conformational variant of a normal protein of the host: the cellular isoform of the prion protein, or PrP(C). Compounds such as glycosaminoglycans and Congo red (CR) have been shown to interfere with both in vitro and in vivo PrP(Sc) formation. It was hypothesized that CR acts by overstabilizing the conformation of PrP(Sc) molecules or by modifying trafficking of PrP(C). Using transfected cells expressing 3F4-tagged mouse PrPs, we show here that CR does not interfere with conversion of PrP molecules carrying pathogenic mutations. On the contrary, after incubation with the drug, some of their properties, such as insolubility and protease resistance, are enhanced and are even acquired by the wild-type molecule. This last observation suggests an alternative mechanism of action of CR and leads us to reconsider the relationship between the biochemical properties of PrP and conformational alteration of the protein.  相似文献   

20.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号