共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
MafT, a new member of the small Maf protein family in zebrafish 总被引:3,自引:0,他引:3
Takagi Y Kobayashi M Li L Suzuki T Nishikawa K Yamamoto M 《Biochemical and biophysical research communications》2004,320(1):62-69
Small Maf proteins play critical roles on morphogenesis and homeostasis through associating with CNC proteins. To date, three small Maf proteins, MafF, MafG, and MafK, have been reported in vertebrates, which share redundant functions. In this study, we tried to identify and characterize small Maf proteins in zebrafish to elucidate their conservation and diversity in the fish kingdom. We identified homolog genes of MafG and MafK but not MafF in zebrafish, indicating the former two are conserved among vertebrates. In addition, a novel type of small Maf protein MafT was identified. MafT protein bound MARE sequence as a homodimer or heterodimers with zebrafish Nrf2 or p45 Nfe2. Co-overexpression of MafT and Nrf2 synergistically activated MARE-mediated gene expression in zebrafish embryos. These results indicated that MafT is a new member of small Maf proteins and involved in the Nrf2-dependent gene regulation in cellular defense system. 相似文献
4.
The mammalian Nramp1 protein is an integral membrane protein expressed exclusively in macrophages, where it plays a critical role in the ability of these cells to destroy ingested microbes. The bactericidal mechanism of action of Nramp1 remains unknown. We report the identification and characterization of cDNA clones corresponding to three homologues of the mammalian Nramp1 gene from the genome of Oryza sativa, OsNramp1, OsNramp2, and OsNramp3. These three genes encode a novel group of highly similar hydrophobic polypeptides sharing between 64% and 75% sequence similarity, that show similar hydropathy profiles, and predicted secondary structure, including the same number, position, and sequence characteristics (including conserved charges) of transmembrane domains. Together, these define a highly conserved membrane associated hydrophobic core. The three plant proteins show a remarkable degree of sequence similarity with their mammalian counterpart (60% to 70% similarity), including primary and secondary structure elements previously described in ion transporters and channels. Expression studies in normal plant tissues indicate that while OsNramp1 is expressed primarily in roots, and OsNramp2 is primarily expressed in leaves, OsNramp3 is expressed in both tissues. The recent discovery that the yeast Nramp homologue SMF1 functions as a manganese transporter raises the exciting possibility that OsNramp encodes a family of metal ion transporters in plants. 相似文献
5.
Trinel PA Maes E Zanetta JP Delplace F Coddeville B Jouault T Strecker G Poulain D 《The Journal of biological chemistry》2002,277(40):37260-37271
The pathogenic yeast Candida albicans has the ability to synthesize unique sequences of beta-1,2-oligomannosides that act as adhesins, induce cytokine production, and generate protective antibodies. Depending on the growth conditions, beta-1,2-oligomannosides are associated with different carrier molecules in the cell wall. Structural evidence has been obtained for the presence of these residues in the polysaccharide moiety of the glycolipid, phospholipomannan (PLM). In this study, the refinement of purification techniques led to large quantities of PLM being extracted from Candida albicans cells. A combination of methanolysis, gas chromatography, mass spectrometry, and nuclear magnetic resonance analyses allowed the complete structure of PLM to be deduced. The lipid moiety was shown to consist of a phytoceramide associating a C(18)/C(20) phytosphingosine and C(25), C(26), or mainly C(24) hydroxy fatty acids. The spacer linking the glycan part was identified as a unique structure: -Man-P-Man-Ins-P-. Therefore, in contrast to the major class of membranous glycosphingolipids represented by mannose diinositol phosphoceramide, which is derived from mannose inositol phosphoceramide by the addition of inositol phosphate, PLM seems to be derived from mannose inositol phosphoceramide by the addition of mannose phosphate. In relation to a previous study of the glycan part of the molecule, the assignment of the second phosphorus position leads to the definition of PLM beta-1,2-oligomannosides as unbranched linear structures that may reach up to 19 residues in length. Therefore, PLM appears to be a new type of glycosphingolipid, which is glycosylated extensively through a unique spacer. The conferred hydrophilic properties allow PLM to diffuse into the cell wall in which together with mannan it presents C. albicans beta-1,2-oligomannosides to host cells. 相似文献
6.
7.
8.
Hiroyuki Minakata Tsuyoshi Fujita Tsuyoshi Kawano Tomoaki Nagahama Tomoyuki Oumi Kazuyoshi Ukena Osamu Matsushima Yojiro Muneoka Kyosuke Nomoto 《FEBS letters》1997,410(2-3)
A member of the GGNG peptide family was isolated from Hirudo nipponia (leech). GGNG peptides had only been isolated previously from earthworms. The C-terminus structure of the leech peptide, LEP (leech excitatory peptide), was –Gly–Gly–Asn–amide, while that of the earthworm peptides, EEP (earthworm excitatory peptide), was –Gly–Gly–Asn–Gly. LEP exerted 1000-fold more potent activities on leech gut than did EEP-2. On the other hand, EEP-2 was 1000-fold more potent than LEP on the crop-gizzard of the earthworm. Analog peptides of LEP and EEP-2 were synthesized, and the myoactive potency of each analog on the leech and earthworm tissues was compared. 相似文献
9.
Kleinhenz B Fabienke M Swiniarski S Wittenmayer N Kirsch J Jockusch BM Arnold HH Illenberger S 《FEBS letters》2005,579(20):4254-4258
Raver2 was identified as a novel member of the hnRNP family based on sequence homology within three RNA recognition motifs and its general domain organization reminiscent of the previously described raver1 protein. Like raver1, raver2 contains two putative nuclear localization signals and a potential nuclear export sequence, and also displays nucleo-cytoplasmic shuttling in a heterokaryon assay. In glia cells and neurons, raver2 localizes to the nucleus. Moreover, the protein interacts with polypyrimidine tract binding protein (PTB) suggesting that it may participate in PTB-mediated nuclear functions. In contrast to ubiquitously expressed raver1, raver2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is essentially restricted to brain, lung, and kidney in the adult mouse. 相似文献
10.
11.
The three major subgroups of the Bcl-2 family, including the prosurvival Bcl-2-like proteins, the proapoptotic Bcl-2 homology (BH)3-only proteins and Bax/Bak proteins, regulate the mitochondrial apoptotic pathway. In addition, some outliers within the Bcl-2 family do not fit into these subgroups. One of them, Bcl-G, has a BH2 and a BH3 region, and was proposed to trigger apoptosis. To investigate the physiological role of Bcl-G, we have inactivated the gene in the mouse and generated monoclonal antibodies to determine its expression. Although two isoforms of Bcl-G exist in human, only one is found in mice. mBcl-G is expressed in a range of epithelial as well as in dendritic cells. Loss of Bcl-G did not appear to affect any of these cell types. mBcl-G only binds weakly to prosurvival members of the Bcl-2 family, and in a manner that is independent of its BH3 domain. To understand what the physiological role of Bcl-G might be, we searched for Bcl-G-binding partners through immunoprecipitation/mass spectroscopy and yeast-two-hybrid screening. Although we did not uncover any Bcl-2 family member in these screens, we found that Bcl-G interacts specifically with proteins of the transport particle protein complex. We conclude that Bcl-G most probably does not function in the classical stress-induced apoptosis pathway, but rather has a role in protein trafficking inside the cell. 相似文献
12.
Joakim Galli Urban Lendahl Gabrielle Paulsson Christer Ericsson Tomas Bergman Mats Carlquist Lars Wieslander 《Journal of molecular evolution》1990,31(1):40-50
Summary We describe the structure of a gene expressed in the salivary gland cells of the dipteranChironomus tentans and show that it encodes 1 of the approximately 15 secretory proteins exported by the gland cells. This sp115,140 gene consists of approximately 65 copies of a 42-bp sequence in a central uninterrupted core block, surrounded by short nonrepetitive regions. The repeats within the gene are highly similar to each other, but divergent repeats are present in a pattern which suggests that the repeat structure has been remodeled during evolution. The 42-bp repeat in the gene is a simple variant of the more complex repeat unit present in the Balbiani ring genes, encoding four of the other secretory proteins. The structure of the sp115,140 gene suggests that related repeat structures have evolved from a common origin and resulted in the set of genes whose secretory proteins interact in the assembly of the secreted protein fibers. 相似文献
13.
Abe MK Saelzler MP Espinosa R Kahle KT Hershenson MB Le Beau MM Rosner MR 《The Journal of biological chemistry》2002,277(19):16733-16743
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway. 相似文献
14.
In yeast, Verprolin plays an important role in rearrangement of the actin cytoskeleton. There are three mammalian homologues of Verprolin, WIP, CR16, and WICH, and all of them bind actin and Wiskott-Aldrich syndrome protein (WASP) and/or neural-WASP. Here, we describe a novel function of WICH. In vitro co-sedimentation analysis revealed that WICH not only binds to actin filaments but also cross-links them. Fluorescence and electron microscopy detected that this cross-linking results in straight bundled actin filaments. Overexpression of WICH alone in cultured fibroblast caused the formation of thick actin fibers. This ability of WICH depended on its own actin cross-linking activity. Importantly, the actin cross-linking activity of WICH was modified through a direct association with N-WASP. Taken together, these data suggest that WICH induces a bundled form of actin filament with actin cross-linking activity and the association with N-WASP suppresses that activity. WICH thus appears to be a novel actin bundling protein. 相似文献
15.
PrP(C) is a glycosylphosphatidylinositol (GPI) anchored glycoprotein of unknown function. Misfolding of normal cellular PrP(C) to the pathogenic PrP(Sc) is the hallmark of prion diseases (transmissible spongiform encephalopathies). Prion diseases are characterized by extensive neurodegeneration and early death. Understanding how PrP(C) maintains its correct conformation is a major endeavor of current inquiry. Here we demonstrate a novel interaction between PrP(C) and the J protein family member, Rdj2 (DjA2; Dj3, Dnj3, Cpr3, and Hirip4). The importance of the J protein family in the cellular folding machinery has been recognized for many years. The PrP(C)/Rdj2 association was direct and concentration-dependent. Other J proteins such as CSPalpha and auxilin did not associate with PrP(C) in the absence of ATP, demonstrating the specificity of the PrP(C)/J protein interaction. These findings suggest that the J protein family serves as a 'folding catalyst' for PrP(C) and implicates Rdj2 as a factor in the protection against prion diseases. 相似文献
16.
Ushizawa K Kaneyama K Takahashi T Tokunaga T Tsunoda Y Hashizume K 《Biochemical and biophysical research communications》2005,326(2):435-441
This study reports the identification and sequence of a full-length cDNA for a new member of bovine prolactin-related protein (bPRP-VII) and its quantitative and localized expression in the placenta. A full-length bPRP-VII cDNA was cloned with a 929-nucleotide open-reading-frame corresponding to a protein of 238 amino acids. The predicted amino acid sequence shares 63% homology with bPRP-I and 70% with bPRP-VI. bPRP-VII has eight cysteine residues with four disulfide bonds, which is more abundant than that of other bPRPs. RT-PCR detected bPRP-VII only in the placenta. In the placenta, mRNA was expressed in the cotyledon and intercotyledonary tissues throughout gestation. Quantitative real-time RT-PCR analysis exhibited a high expression of bPRP-VII mRNA in the fetal membrane at Day 27 of gestation. In the placentome on Day 60 of gestation, in situ hybridization analysis evidenced bPRP-VII mRNA in binucleate cells. bPRP-VII gene produced a mature protein in mammalian cell expression system. Approximately 29kDa protein was confirmed in this by the Western blot analysis with FLAG epitope tag. Expression profiles and localization were similar to those of bPRP-I. Although the functional data remain to be examined, a new member of the bPRP-VII gene was cloned. In addition to bPRP-I, bPRP-VII may take on an important functional role in implantation. 相似文献
17.
18.
In the present communication, we report the identification of a new gene family which encodes the protein subunits of the proteasome. The proteasome is a high-Mr complex possessing proteolytic activity. Screening a Drosophila λgt11 cDNA expression library with the proteasome-specific antibody N19-28 we isolated a clone encoding the 28-kDa No. 1 proteasome protein subunit. In accordance with the nomenclature of proteasome subunits in Drosophila, the corresponding gene is designated PROS-28.1, and it encodes an mRNA of 1.1 kb with an open reading frame of 249 amino acids (aa). Genomic Southern-blot hybridization shows PROS-28.1 to be a member of a family of related genes. Analysis of the predicted aa sequence reveals a potential nuclear targeting signal, a potential site for tyrosine kinase and a potential cAMP/cGMP-dependent phosphorylation site. The aa sequence comparison of the products of PROS-28.1 and PROS-35 with the C2 proteasome subunit of rat shows a strong sequence similarity between the different proteasome subunits. The data suggest that at least a subset of the proteasome-encoding genes belongs to a family of related genes (PROS gene family) which may have evolved from a common ancestral PROS gene. 相似文献
19.
Noriaki Ohkawa Kenji Kokura Toru Matsu-ura Takashi Obinata Yoshiyuki Konishi Taka-aki Tamura† ‡ 《Journal of neurochemistry》2001,78(1):75-87
Activity-dependent synaptic plasticity has been thought to be a cellular basis of memory and learning. The late phase of long-term potentiation (L-LTP), distinct from the early phase, lasts for up to 6 h and requires de novo synthesis of mRNA and protein. Many LTP-related genes are enhanced in the hippocampus during pentyrenetetrazol (PTZ)- and kainate (KA)-mediated neural activation. In this study, mice were administered intraperitoneal injections of PTZ 10 times, once every 48 h, and showed an increase in seizure indexes. Genes related to plasticity were efficiently induced in the mouse hippocampus. We used a PCR-based cDNA subtraction method to isolate genes that are expressed in the hippocampus of repeatedly PTZ-treated mice. One of these genes, neural activity-related RING finger protein (NARF), encodes a new protein containing a RING finger, B-box zinc finger, coiled-coil (RBCC domain) and beta-propeller (NHL) domain, and is predominantly expressed in the brain, especially in the hippocampus. In addition, KA up-regulated the expression of NARF mRNA in the hippocampus. This increase correlated with the activity of the NMDA receptor. By analysis using GFP-fused NARF, the protein was found to localize in the cytoplasm. Enhanced green fluorescent protein-fused NARF was also localized in the neurites and growth cones in neuronal differentiated P19 cells. The C-terminal beta-propeller domain of NARF interacts with myosin V, which is one of the most abundant myosin isoforms in neurons. The NARF protein increases in hippocampal and cerebellar neurons after PTZ-induced seizure. These observations indicated that NARF expression is enhanced by seizure-related neural activities, and NARF may contribute to the alteration of neural cellular mechanisms along with myosin V. 相似文献