首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:初步探讨旋转恒定磁场治疗急性骨髓型放射病的效果。方法:BALB/C小鼠按体重随机分为磁疗组和对照组,每组再各分为4组.分别接受0Gy、6.0Gy、8.0Gy、10.0Gy ^60COγ射线全身辐射,照后,对照组不作任何处理,磁疗组接受磁场处理30d,每天2次,每次1.5h,旋转磁场强度为0.6T,比较两组小鼠30d的存活率和存活期。结果:单纯磁场处理对正常小鼠生存状态及存活率无明显影响;10.0Gy组和8.0Gy组小鼠生存率磁疗组与对照组之间比较均无统计学差异(P〉0.05);6.0Gy组生存率磁疗组和对照组之间比较有统计学差异(P〈0.05),其磁疗组30d平均存活率为71.43%,平均存活期为(24.93±8.43)d,对照组30d平均存活率21.4l%.平均存活期为(17.07±7.70)d。结论:旋转恒定磁场不能提高10.0Gy及8.0Gy剂量所致极重度急性骨髓型放射病小鼠的生存率,但对6.0Gy所致重度急性骨髓型放射病有明显的保护作用,从而为旋转恒定磁场应用于临床治疗重度急性骨髓型放射损伤提供了实验依据。  相似文献   

2.
It was established that single total X-ray irradiation in the doses of 0.1; 0.4; 1.0; 2.0; 3.0 and 6.0 Gy 24 hours after irradiation results in reliable changes in membrane lipids composition of brush border of enterocytes in doses over 1.0 Gy. By this changes under increase of dosage of irradiation it were marked differences in comparison with control in lipid-protein, total phospholipids-protein, cholesterol-protein and cholesterol-total phospholipids rations. In lipid composition major changes are connected with increase of lysophosphatidylcholine and lysophosphatidylethanolamine concentrations, decrease of sphingomyelin content and increase of that of phosphatidylethanolamine. Content of cholesterol and free fatty acids decreased reliably under irradiation in doses over 1.0 Gy as well. Data obtained proves that structural-functional properties of brush border membranes of enterocytes of small intestine are altered under irradiation in doses ranging from 1.0 to 6.0 Gy. Lower doses (0.1; 0.4) cause only trend of changes named above.  相似文献   

3.
The effects of prolonged irradiation at accumulated doses from 0.5 to 6.0 Gy (dose rate 3.03 cGy/day) on reproductive organs' weight (testes, epididymises, seminal vesicles, prostate) of male rats starting from the early ontogenetic period were studied. On the first day after the irradiation with 1.0 Gy dose a significant loss of the weight in testes and epididymises was revealed. This leaded to the marked atrophy of the organs with the increase of the radiation dose. Long-term restoration of the weight of testes and epididimyses was registered. It was not completed during three months after radiation exposure at 2.0 Gy and higher doses for epididimyses and 4.0-6.0 Gy for testes. The respective changes in the seminal vesicles and prostate weight were less pronounced and had more complicated character. However in the distant period (30-90 days of postreatment) after exposure to 2.0 Gy these parameters were noticeably decreased.  相似文献   

4.
Function of islets of Langerhans of Wistar male rats was studied after irradiation of animals with different doses. The pancreas function was determined with regard to the incorporation of 65Zn into the gland tissues. Total-body irradiation (60Co) with the dose of 4.0 Gy somewhat increased the function of islets; at the dose of 8.0 Gy their function was transiently blocked, and at the dose of 15 Gy the function of islets of Langerhans was blocked completely.  相似文献   

5.
The aim of this work was to examine the effect of gamma irradiation on the energy metabolism and physiological functions of blood platelets. Blood platelets were irradiated with a 60Co-source in the range of 0.5--8.0 krad. Before and after irradiation, the free nucleotide content of platelets and the ability of platelets to perform their hemostatic functions (the release reaction with thrombin) were determined. The obtained results demonstrated that: 1. ATP, ADP and AMP content reached minimum values at 1.5--2.0 krad. 2. The ability of platelets to perform the release reaction correlates with the ATP level at doses of 1.5--2.0 krad. At higher doses (6.0--8.0) disturbances of the release reaction, indicating damage to the platelet plasma membranes, were observed.  相似文献   

6.
The radiosensitivity of spermatogonial stem cells to X rays was determined in the various stages of the cycle of the seminiferous epithelium of the CBA mouse. The numbers of undifferentiated spermatogonia present 10 days after graded doses of X rays (0.5-8.0 Gy) were taken as a measure of stem cell survival. Dose-response relationships were generated for each stage of the epithelial cycle by counting spermatogonial numbers and also by using the repopulation index method. Spermatogonial stem cells were found to be most sensitive to X rays during quiescence (stages IV-VII) and most resistant during active proliferation (stages IX-II). The D0 for X rays varied from 1.0 Gy for quiescent spermatogonial stem cells to 2.4 Gy for actively proliferating stem cells. In most epithelial stages the dose-response curves showed no shoulder in the low-dose region.  相似文献   

7.
Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to γ-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05–0.25 Gy, whereas at doses of 0.5–6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia. Received: 18 October 1996 / Accepted in revised form: 3 April 1997  相似文献   

8.
Intracellular pH (pHin) changes after gamma-irradiation of Chinese hamster fibroblasts have been studied by a fluorescence method using the ratio of fluorescence intensities after excitation at 488 and 458 nm and measurement at emission wavelength of 515 nm. Irradiation with doses inducing reproductive death (2.5-20 Gy) causes a pHin shift towards the alkaline region by 0.4-0.5 pH units, but this shift is transient. Irradiation with a 500 Gy dose, inducing interphase death, causes a more pronounced (pHin greater than or equal to 8.0) alkalization of the intracellular medium which is retained for more than 1.5 hours post-irradiation. It is proposed that the observed alkalization of the internal medium of irradiated cells is possibly due to a change in the functional state of mitochondria. These changes are probably one of the causes of interphase cell death after irradiation with high doses.  相似文献   

9.
The radiosensitization of Chinese hamster V79 cells in vitro by air and misonidazole at low X-ray doses (0.2-6.0 Gy) had been studied. These survival data, together with high-dose data, were fitted to the linear quadratic model ln S = -(alpha D + beta D2), deriving estimates of alpha and beta by six different methods to illustrate the influence of the statistical treatment on the values so derived. This in vitro study clearly demonstrated that the survival parameters alpha and beta are dependent to some degree on the method of analysis of the raw survival data; however, their ratios, the values of oxygen enhancement ratios (OERs) and radiosensitizer enhancement ratios (SERs) derived from the different methods, are similar. All methods of analysis give reduced OERs at low radiation doses for combined low- and high-dose X-ray data. However, the OERs are still appreciably high, ranging from 2.45 to 2.50 for an oxic dose of 2 Gy. All methods of analysis gave reduced SERs at low doses for combined low and high X-ray dose data for hypoxic cells irradiated in 1 mmol dm-3 misonidazole. At survival levels corresponding to doses of 2 Gy in the presence of 1 mmol dm-3 misonidazole and SERs ranged from 1.2 to 1.5.  相似文献   

10.
Data reported in the literature up to 1985 on reciprocal translocation induction in male mouse germ cells by external gamma-ray doses ranging from 0.5 to 6.0 Gy delivered at fixed dose rates were analyzed. On the assumption of a non-threshold linear dose response, zero effect at zero dose, and a center of distribution lying on an approximately straight line, calculations were made of linear regression coefficients. These coefficients (b), as a function of the dose rate (P), were well fitted by two straight lines: b = (3.15 +/- 0.59 log P) X 10(-6) for dose rates from 0.01 to 0.1 mGy/min; and b = (7.52 +/- 3.86 log P) X 10(-6) for dose rates ranging from 0.06 to 1.2 X 10(3) mGy/min. The intersection point of these two lines determined the so-called threshold level of the dose rate, namely, 4.6 X 10(-2) mGy/min, at which the effectiveness of external gamma-irradiation is not expected to exceed 2.36 X 10(-6)/mGy. In addition, experiments were undertaken in which yields were recorded of reciprocal translocations in germ cells of male mice exposed to 0.9 Gy of gamma-radiation at dose rates ranging from 6.14 X 10(-3) to 6.14 X 10(2) mGy/min (6 levels); comparisons were made with data published up to 1985 from similar studies using other fixed doses. To do this, translocation yields were expressed as relative yields (F) and their relationship to the dose rate (P) for the individual fixed doses was represented by an equation of the type: F = alpha + beta log P. For most of the equations, the regression coefficients were in good agreement and a single relationship was obtained to represent them. From the analysis performed it follows that, within the 0.6-6.0 Gy dose range, the pattern of the F vs. P relationship is unaffected by the dose. This supports the initial assumption that for the dose range up to 6.0 Gy the dose response for the reciprocal translocation yield is a non-threshold straight-line relationship.  相似文献   

11.
The present work aims at studying the effect of gamma radiation on the hard dental tissues. Eighty adult male albino rats with weights of about 250 g were used. The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy whole-body gamma doses. The effects on hard dental tissue samples were investigated after 48 h in histological and ground sections using light microscopy. Areas of acid phosphatase activity were detected using tartrate-resistant acid phosphatase (TRAP) stains. Observation of histological sections revealed disturbance in predentin thickness and odontoblastic layer as the irradiation dose increased. In cementum, widened cementocytes lacunae were occasionally detected even with low irradiated doses. On the other hand, relatively homogenous enamel was detected with darkened areas in enamel surface at doses over than 0.5 Gy. TRAP-positive cells were detected on the surface of the dentin of irradiated groups as well as cementum surface. Minimal detectable changes were observed in ground sections.  相似文献   

12.
A possibility to use tranquilizers (aphobazole, phenazepamum) for reducing symptoms of prolonged emotional stress influencing rats after irradiation under treatment with a radioprotector indralin was investigated. It was found that indralin showed the protective effect and activated regenerative processes in the hemopoietic system of animals exposed to doses of 6.0 and 7.0 Gy. The prolonged emotional stress developing in the early periods after the exposure, essentially reduced the favourable action of the radioprotector on restoration of hemopoiesis. The application of tranquilizers stopped the inhibiting action of the emotional stress on the hemopoietic system of the irradiated animals in conditions of radioprotective administering.  相似文献   

13.
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.  相似文献   

14.
In our previous study, using the micronucleus (MN) assay, a hyper-radiosensitivity (HRS)-like phenomenon was observed after single low doses for fibroblasts from two and keratinocytes from four of the 40 patients studied. In this paper, we report the response of primary keratinocytes from 23 and fibroblasts from 21 of these cancer patients to multiple low-dose irradiations and answer the question regarding whether the patients with an HRS-like response after single low doses also demonstrate chromosomal hypersensitivity after multiple low doses. The cells were irradiated with three doses of 0.25 Gy separated by 4-h intervals, and MN induction was compared with that after the same total dose given as a single fraction of 0.75 Gy. Similarly, the effect of three doses of 0.5 Gy was compared with that of a single dose of 1.5 Gy. For fibroblasts from two and keratinocytes from four patients who demonstrated a single-dose HRS-like response, a significant inverse effect of fractionation (greater MN induction after three doses of 0.25 Gy than after a single dose of 0.75 Gy) was observed, which suggests a repeated hypersensitive response after each dose of 0.25 Gy. Such an effect was not seen for the cells from 19 patients who were single-dose HRS-like negative. In conclusion, an inverse fractionation effect for MN induction that was observed in fibroblasts from two and keratinocytes from four patients after three doses of 0.25 Gy (but not 3 x 0.5 Gy) reflects the chromosomal hyper-radiosensitivity seen in the same patients in response to single low doses.  相似文献   

15.
The liver has powerful capability to proliferate in response to various injuries, but little is known as to liver proliferation after irradiation (IR) injury. This study investigated whether liver proliferation could be stimulated in low-dose irradiated liver by partial liver IR injury with high dose radiation. Sprague–Dawley rats were irradiated by 6-MV X-ray with single dose of 25 Gy to the right-half liver, while the left-half liver was shielded (0.7 Gy) or irradiated with single doses of 3.2, 5.6, and 8.0 Gy, respectively. Hepatic proliferation in the shielded and low-dose irradiated left-half liver was evaluated by serum hepatic growth factor (HGF), proliferating cell nuclei antigen (PCNA), liver proliferation index (PI), hepatocyte mitosis index (MI). The observation time was 0 day (before IR), 30, 60, 90, and 120 days after IR. Our results showed that serum HGF and hepatocyte HGF mRNA increased after IR with HGF mRNA peak on day 30 in the shielded and low-dose irradiated left-half livers, and their values increased as the dose increased to the left-half liver. Liver PI and PCNA mRNA peaked on day 60 with stronger expressions in higher doses-irradiated livers. MI increased after IR, with the peak noted on day 60 in the shielded and on day 90 in the low-dose irradiated left-half livers. There was a 30 day delay between MI peaks in the shielded and low-dose irradiated livers. In conclusion, 25 Gy partial liver IR injury could stimulate the shielded liver and low-dose irradiated liver to proliferate. In the livers receiving a dose range of 3.2–8.0 Gy, the proliferation was stronger in higher doses-irradiated liver than the low-dose irradiated. However, IR delayed hepatocyte mitosis.  相似文献   

16.
Eggs of domestic chickens and black-headed gulls were continuously exposed to gamma-rays during incubation, using dose rates ranging from 0.004 to 0.08 Gy h-1 for 20 days. Acute-dose experiments were also conducted, and eggs were irradiated on day 10 of incubation with doses of between 1.92 and 28.8 Gy. Hatchability and numbers reaching full-term developed were affected only after chronic doses of 9.6 Gy and acute doses of 4.8 Gy or higher. Maximum embryo mortality occurred around days 10-11 of incubation and just before hatching, in all experiments. An increase in foot and limb deformities was observed above acute and chronic doses of 9.6 Gy.  相似文献   

17.
A comparative study was made of the morphological and biochemical indices of rat thymus cells after gamma-irradiation with doses of 4-10 Gy (median), 20 Gy (high), and 200-400 Gy (superhigh). It was shown that 4 h after irradiation with superhigh doses the yield of polydeoxynucleotides (PDN) was twice as low as that observed after doses of 4-10 Gy. 24 h after irradiation the amount of the extracted PDN in thymocytes exposed to superhigh doses was markedly larger than that after 4 hours. After all doses applied chromatin degradation occurred at the internucleosome sites in a strict order, the activity of acid and alkaline nucleases being unchanged. A large number of cells have normal nuclear structure 4 h after irradiation (200-400 Gy), as was demonstrated by the electron microscopy data, while in 24 h no intact cells were virtually found in the thymus which correlated with the changes in the PDN yield. The mechanisms of the lymphoid cell death under the effect of different radiation doses are discussed.  相似文献   

18.
Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0015 Gy/s dose rate and observed on a regular basis for 30 days. Since almost 50% lethality was seen with 8 Gy, it was selected as the challenging dose for further studies. Irradiation of mice with conditioning doses (0.25 or 0.5 Gy) and subsequent exposure to 8 Gy caused significant increase in the survival of mice compared to irradiated control. The splitting of challenging dose did not influence the efficiency of conditioning doses (0.25 Gy and 0.5 Gy) to induce an adaptive response. However conditioning doses given in fractions (0.25 Gy + 0.25 Gy) or (0.5 Gy + 0.5 Gy) were able to modulate the response of challenging dose of 8 Gy. These results clearly showed the occurrence of adaptive response in terms of survival of animals. The conditioning dose given in small fractions seemed to be more effective. The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed  相似文献   

19.
The response of human erythrocytes to X-rays in the dose range from 40 Gy to 600 Gy was determined on the basis of changes in the activities of AChE and ATPase. The Na,K-ATPase activity increased above the control value at doses below 200 Gy, while at the doses higher than 200 Gy, it decreased, reaching 96% of the control value at a dose of 600 Gy. In the range of doses up to 200 Gy, the AChE activity, expressed as Vmax, did not change. At higher doses, it fell drastically, reaching 33% of the control value at a dose of 600 Gy. Simultaneously, the enzyme substrate affinity decreased at 200 Gy, and then started to increase at lower values of Vmax. The obtained results suggest that under appropriate conditions, low doses of radiation may have the opposite effects to high doses.  相似文献   

20.
The investigation was carried out to evaluate the effect of different doses of gamma rays (100, 200, 300, 400, 500 Gy and zero doses as control) on various morphological aspects of Abelmoschus esculentus. A comparison of the results of different doses with control showed that gamma irradiation significantly affected various parameters. Days to germination were almost the same as compared to control, but 400 Gy took minimum days to germination. Germination % was 100% both in control and the irradiated plants. 100 Gy took minimum days for flower initiation as compared to control and other doses. Fruit initiation early occurred in 100Gy as compared to other doses, and fruit maturation occurred early in 300 Gy as compared to control. Plant height was significantly increased at 500 Gy as compared to control. Number of fruits per plant was significantly decreased at 200 Gy as compared to control. Fruit length decreased in all doses but in control fruit length was maximum. Number of seeds per fruit was maximum at control, fresh and dry weights of seeds were increased in control as compared to other doses. The number of nodes decreased in all doses but in the control the numbers of nodes were maximum. Branches were increased in100Gy as compare to 200, 300,400,500 Gy as well in control. Numbers of leaves were increased in 300 Gy as compared to other doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号