首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to 1) test the hypothesis that skeletal muscle cells (myotubes) after mechanical loading and/or injury are a source of soluble factors that promote neutrophil chemotaxis and superoxide anion (O2·) production and 2) determine whether mechanical loading and/or injury causes myotubes to release cytokines that are known to influence neutrophil responses [tumor necrosis factor- (TNF-), IL-8, and transforming growth factor-1 (TGF-1)]. Human myotubes were grown in culture and exposed to either a cyclic strain (0, 5, 10, 20, or 30% strain) or a scrape injury protocol. Protocols of 5, 10, and 20% strain did not cause injury, whereas 30% strain and scrape injury caused a modest and a high degree of injury, respectively. Conditioned media from strained myotubes promoted chemotaxis of human blood neutrophils and primed them for O2· production in a manner that was dependent on a threshold of strain and independent from injury. Neutrophil chemotaxis, but not priming, progressively increased with higher magnitudes of strain. Conditioned media only from scrape-injured myotubes increased O2· production from neutrophils. Concentrations of IL-8 and total TGF-1 in conditioned media were reduced by mechanical loading, whereas TNF- and active TGF-1 concentrations were unaffected. In conclusion, skeletal muscle cells after mechanical loading and injury are an important source of soluble factors that differentially influence neutrophil chemotaxis and the stages of neutrophil-derived reactive oxygen species production. Neutrophil responses elicited by mechanical loading, however, did not parallel changes in the release of IL-8, TGF-1, or TNF- from skeletal muscle cells. inflammation; cytokines; exercise; free radicals  相似文献   

2.
Twoestrogen receptor (ER) isoforms, ER and ER, have been described.However, no information is available in any species regarding thecomparison of ER and ER levels in pregnant intrauterine tissues.We investigated 1) distribution of ER and ER mRNA in myometrium, amnion, choriodecidua, and placenta; 2) theirabundance in intrauterine tissues at term not in labor (NIL) and inspontaneous term labor (STL); and 3) immunolocalization ofER and ER in pregnant rhesus monkey myometrium. Myometrium,amnion, choriodecidua, and placenta were obtained at cesarean sectionfrom monkeys in STL at 156-166 days gestational age(GA) (n = 4) and from control monkeys NIL at140-152 days GA (n = 4). RT-PCR was conducted to determineER and ER and glyceraldehyde-3-phosphate dehydrogenase mRNAabundance in four intrauterine tissues of the pregnant rhesus monkey.The cloned ER PCR fragment was subjected to sequence analysis. ERand ER were localized in the myometrium by immunohistochemistry. Wedemonstrated that 1) rhesus monkey ER shares >97%identity with human ER in the region sequenced; 2) both ERswere expressed in myometrium, amnion, and choriodecidua but not inplacenta in the current study; 3) ER and ER weredifferentially distributed in myometrium and amnion; 4) ERand ER were immunolocalized in myometrial smooth cells and smoothmuscle and endothelial cells of the myometrial blood vessels. Thebiological significance of these quantitative differences in ERsubtypes merits further study.

  相似文献   

3.
Active K absorption in the rat distal colon is energizedby an apical H-K-ATPase, a member of the gene family of P-type ATPases. The H-K-ATPase -subunit (HKc) has been cloned and characterized (together with the -subunit of either Na-K-ATPase or gastric H-K-ATPase) in Xenopus oocytes as ouabain-sensitive86Rb uptake. In contrast, HKc, when expressed in Sf9cells without a -subunit, yielded evidence of ouabain-insensitiveH-K-ATPase. Because a -subunit (HKc) has recently been clonedfrom rat colon, this present study was initiated to determine whetherH-K-ATPase and its sensitivity to ouabain are expressed when these twosubunits (HKc and HKc) are transfected into a mammalian cellexpression system. Transfection of HEK-293 cells with HKc and HKccDNAs resulted in the expression of HKc and HKc proteins andtheir delivery to plasma membranes. H-K-ATPase activity was identified in crude plasma membranes prepared from transfected cells and was1) saturable as a function of increasing K concentration with aKm for K of 0.63 mM; 2) inhibited byorthovanadate; and 3) insensitive to both ouabain andSch-28080. In parallel transfection studies with HKc and Na-K-ATPase1 cDNAs and with HKc cDNA alone, there was expression ofouabain-insensitive H-K-ATPase activity that was 60% and 21% of thatin HKc/HKc cDNA transfected cells, respectively. Ouabain-insensitive 86Rb uptake was also identified incells transfected with HKc and HKc cDNAs. These studies establishthat HKc cDNA with HKc cDNA express ouabain-insensitiveH-K-ATPase similar to that identified in rat distal colon.

  相似文献   

4.
The catalytic -subunit of oligomeric P-type ATPases such asNa-K-ATPase and H-K-ATPase requires association with a -subunit after synthesis in the endoplasmic reticulum (ER) to become stably expressed and functionally active. In this study, we have expressed the-subunit of Xenopus gastricH-K-ATPase (HK) in Xenopus oocytes together with -subunits of H-K-ATPase (HK) or Na-K-ATPase (NK) and have followed the biosynthesis, assembly, and cell surface expression of functional pumps. Immunoprecipitations ofXenopus HK from metabolicallylabeled oocytes show that it is well expressed and, when synthesizedwithout -subunits, can leave the ER and become fully glycosylated.Xenopus HK can associate with both coexpressed HK and NK, but the - complexes formed aredegraded rapidly in or close to the ER and do not produce functionalpumps at the cell surface as assessed by86Rb uptake. A possibleexplanation of these results is thatXenopus HK may contain atissue-specific signal that is important in the formation or correcttargeting of functional - complexes in the stomach but thatcannot be recognized in Xenopusoocytes and in consequence leads to cellular degradation of the -complexes in this experimental system.

  相似文献   

5.
Transforming growth factor-(TGF-) is known to induce -smooth muscle actin (-SMA) infibroblasts and is supposed to play a role in myofibroblastdifferentiation and tumor desmoplasia. Our objective was to elucidatethe impact of TGF-1 on -SMA expression in fibroblasts in athree-dimensional (3-D) vs. two-dimensional (2-D) environment. Inmonolayer culture, all fibroblast cultures responded in a similarfashion to TGF-1 with regard to -SMA expression. In fibroblastspheroids, -SMA expression was reduced and induction by TGF-1 washighly variable. This difference correlated with a differentialregulation in the TGF- receptor (TGFR) expression, in particularwith a reduction in TGF-RII in part of the fibroblast types. Ourdata indicate that 1) sensitivity to TGF-1-induced -SMA expression in a 3-D environment is fibroblast-type specific, 2) fibroblast type-independent regulatory mechanisms, suchas a general reduction/loss in TGF-RIII, contribute to an altered TGFR expression profile in spheroid compared with monolayer culture, and 3) fibroblast type-specific alterations in TGFR typesI and II determine the sensitivity to TGF-1-induced -SMAexpression in the 3-D setting. We suggest that fibroblasts that can beinduced by TGF-1 to produce -SMA in spheroid culture reflect a"premyofibroblastic" phenotype.

  相似文献   

6.
We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-B and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-B in columnar but not basal cells. IL-1 + TNF- elicited responses similar to those of flagellin. Basolateral flagellin or IL-1 + TNF- caused 1.5- to 4-fold larger responses, consistent with the fact that NF-B activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF- receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1 + TNF- in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1, and TNF- do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1, and TNF-. toll-like receptor; nuclear factor-B; interleukin-8; tumor necrosis factor; interleukin-1  相似文献   

7.
The amiloride-sensitiveepithelial sodium channel (ENaC) plays a critical role in fluid andelectrolyte homeostasis and is composed of three homologous subunits:, , and . Only heteromultimeric channels made of ENaCare efficiently expressed at the cell surface, resulting in maximallyamiloride-sensitive currents. To study the relative importance ofvarious regions of the - and -subunits for the expression offunctional ENaC channels at the cell surface, we constructedhemagglutinin (HA)-tagged --chimeric subunits composed of -and -subunit regions and coexpressed them with HA-tagged - and-subunits in Xenopus laevis oocytes. The whole cellamiloride-sensitive sodium current (Iami) andsurface expression of channels were assessed in parallel using thetwo-electrode voltage-clamp technique and a chemiluminescence assay.Because coexpression of ENaC resulted in largerIami and surface expression compared withcoexpression of ENaC, we hypothesized that the -subunit ismore important for ENaC trafficking than the -subunit. Usingchimeras, we demonstrated that channel activity is largely preservedwhen the highly conserved second cysteine rich domains (CRD2) of the- and -subunits are exchanged. In contrast, exchanging the wholeextracellular loops of the - and the -subunits largely reducedENaC currents and ENaC expression in the membrane. This indicates thatthere is limited interchangeability between molecular regions of thetwo subunits. Interestingly, our chimera studies demonstrated that theintracellular termini and the two transmembrane domains of ENaC aremore important for the expression of functional channels at the cellsurface than the corresponding regions of ENaC.

  相似文献   

8.
Large-conductance Ca2+-activated potassium (BK) channels are composed of pore-forming -subunits and auxiliary -subunits. The -subunits are widely expressed in many cell types, whereas the -subunits are more tissue specific and influence diverse aspects of channel function. In the current study, we identified the presence of the smooth muscle-specific 1-subunit in murine colonic tissue using Western blotting. The native 1-subunits migrated in SDS-PAGE as two molecular mass bands. Enzymatic removal of N-linked glycosylations from the 1-subunit resulted in a single band that migrated at a lower molecular mass than the native 1-subunit bands, suggesting that the native 1-subunit exists in either a core glycosylated or highly glycosylated form. We investigated the functional consequence of deglycosylating the 1-subunit during inside-out single-channel recordings. During inside-out single-channel recordings, with N-glycosidase F in the pipette solution, the open probability (Po) and mean open time of BK channels increased in a time-dependent manner. Deglycosylation of BK channels did not affect the conductance but shifted the steady-state voltage of activation toward more positive potentials without affecting slope when Ca2+ concentration was <1 µM. Treatment of myocytes lacking the 1-subunits of the BK channel with N-glycosidase F had no effect. These data suggest that glycosylations on the 1-subunit in smooth muscle cells can modify the biophysical properties of BK channels. peptide N-glycosidase F; large-conductance Ca2+-activated K+ channels; N-linked glycosylation; single-channel recording; auxiliary subunit  相似文献   

9.
Using the Xenopus oocyteexpression system, we examined the mechanisms by which the - and-subunits of an epithelial Na+channel (ENaC) regulate -subunit channel activity and the mechanisms by which -subunit truncations cause ENaC activation. Expression of-ENaC alone produced small amiloride-sensitive currents (43 ± 10 nA, n = 7). These currentsincreased >30-fold with the coexpression of - and -ENaC to1,476 ± 254 nA (n = 20).This increase was accompanied by a 3.1- and 2.7-fold increase ofmembrane fluorescence intensity in the animal and vegetal poles of theoocyte, respectively, with use of an antibody directed against the-subunit of ENaC. Truncation of the last 75 amino acids of the-subunit COOH terminus, as found in the original pedigree ofindividuals with Liddle's syndrome, caused a 4.4-fold(n = 17) increase of theamiloride-sensitive currents compared with wild-type -ENaC.This was accompanied by a 35% increase of animal pole membranefluorescence intensity. Injection of a 30-amino acid peptide withsequence identity to the COOH terminus of the human -ENaCsignificantly reduced the amiloride-sensitive currents by 40-50%.These observations suggest a tonic inhibitory role on the channel'sopen probability (Po) by the COOH terminus of -ENaC. We conclude that the changes of current observed with coexpression of the - and -subunits or those observed with -subunit truncation are likely the result ofchanges of channel density in combination with large changes ofPo.

  相似文献   

10.
We have confirmed that A6 cells (derived fromkidney of Xenopus laevis), whichcontain both mineralocorticoid and glucocorticoid receptors, do notnormally possess 11-hydroxysteroid dehydroxgenase (11-HSD1 or11-HSD2) enzymatic activity and so are without apparent "protective" enzymes. A6 cells do not convert the glucocorticoid corticosterone to 11-dehydrocorticosterone but do, however, possess steroid 6-hydroxylase that transforms corticosterone to6-hydroxycorticosterone. This hydroxylase is cytochromeP-450 3A (CYP3A). We have nowdetermined the effects of 3,5-tetrahydroprogesterone andchenodeoxycholic acid (both inhibitors of 11-HSD1) and11-dehydrocorticosterone and11-hydroxy-3,5-tetrahydroprogesterone (inhibitors of11-HSD2) and carbenoxalone, which inhibits both 11-HSD1 and11-HSD2, on the actions and metabolism of corticosterone and activeNa+ transport [short-circuitcurrent(Isc)] inA6 cells. All of these 11-HSD inhibitory substances induced asignificant increment in corticosterone-inducedIsc, which wasdetectable within 2 h. However, none of these agents caused an increasein Isc whenincubated by themselves with A6 cells. In all cases, the additionalIsc was inhibitedby the mineralocorticoid receptor (MR) antagonist, RU-28318, whereasthe original Iscelicited by corticosterone alone was inhibited by the glucocorticoidreceptor antagonist, RU-38486. In separate experiments, each agent wasshown to significantly inhibit metabolism of corticosterone to6-hydroxycorticosterone in A6 cells, and a linear relationshipexisted between 6-hydroxylase inhibition and the MR-mediatedincrease in Iscin the one inhibitor tested. Troleandomycin, a selective inhibitor ofCYP3A, inhibited 6-hydroxylase and also significantly enhancedcorticosterone-induced Isc at 2 h. Theseexperiments indicate that the enhanced MR-mediated Isc in A6 cellsmay be related to inhibition of 6-hydroxylase activity in thesecells and that this 6-hydroxylase (CYP3A) may be protecting theexpression of corticosterone-induced active Na+ transport in A6 cells byMR-mediated mechanism(s).

  相似文献   

11.
To evaluate the physiological functions of1-,2-, and3-adrenoceptors (ARs) in brownadipose tissue, the lipolytic and respiratory effects of variousadrenergic agonists and antagonists were studied in rat brownadipocytes. The -agonists stimulated both lipolysis and respiration(8-10 times above basal levels), with the following order ofpotency (concentration eliciting 50% of maximum response):CL-316243 (3) > BRL-37344(3) > isoproterenol (mainly1/2) > norepinephrine (NE; mainly1/2) > epinephrine (mainly1/2) dobutamine (1)  procaterol (2). Schild plot coefficients of competitive inhibition experiments using ICI-89406 (1 antagonist) revealed thatmore than one type of receptor mediates NE action. It is concluded fromour results that 1) NE, at low plasma levels (1-25 nM), stimulates lipolysis and respiration mainly through 1-ARs,2) NE, at higher levels, stimulateslipolysis and respiration via both1- and3-ARs,3)2-ARs play only a minor role,and 4)3-ARs may represent thephysiological receptors for the high NE concentrations in the synapticcleft, where the high-affinity1-ARs are presumablydesensitized. It is also suggested that lipolysis represents theflux-generating step regulating mitochondrial respiration.

  相似文献   

12.
Stimulation of -adrenergic receptors (-AR) induces apoptosis in adult rat ventricular myocytes (ARVMs) via the JNK-dependent activation of mitochondrial death pathway. Recently, we have shown that inhibition of matrix metalloproteinase-2 (MMP-2) inhibits -AR-stimulated apoptosis and that the apoptotic effects of MMP-2 are possibly mediated via its interaction with 1 integrins. Herein we tested the hypothesis that MMP-2 impairs 1 integrin-mediated survival signals, such as activation of focal adhesion kinase (FAK), and activates the JNK-dependent mitochondrial death pathway. Inhibition of MMP-2 using SB3CT, a selective gelatinase inhibitor, significantly increased FAK phosphorylation (Tyr-397 and Tyr-576). TIMP-2, tissue inhibitor of MMP-2, produced a similar increase in FAK phosphorylation, whereas treatment of ARVMs with purified active MMP-2 significantly inhibited FAK phosphorylation. Inhibition of MMP-2 using SB3CT inhibited -AR-stimulated activation of JNKs and levels of cytosolic cytochrome c. Treatment of ARVMs with purified MMP-2 increased cytosolic cytochrome c release. Furthermore, inhibition of MMP-2 using SB3CT and TIMP-2 attenuated -AR-stimulated decreases in mitochondrial membrane potential. Overexpression of 1 integrins using adenoviruses expressing the human 1A-integrin decreased -AR-stimulated cytochrome c release and apoptosis. Overexpression of 1 integrins also inhibited apoptosis induced by purified active MMP-2. These data suggest that MMP-2 interferes with the 1 integrin survival signals and activates JNK-dependent mitochondrial death pathway leading to apoptosis. matrix metalloproteinases; focal adhesion kinase; c-Jun NH2-terminal kinase; cytochrome c  相似文献   

13.
Calsequestrin (CS) is the low-affinity, high-capacity calcium binding protein segregated to the lumen of terminal cisternae (TC) of the sarcoplasmic reticulum (SR). The physiological role of CS in controlling calcium release from the SR depends on both its intrinsic properties and its localization. The mechanisms of CS targeting were investigated in skeletal muscle fibers and C2C12 myotubes, a model of SR differentiation, with four deletion mutants of epitope (hemagglutinin, HA)-tagged CS: CS-HA24NH2, CS-HA2D, CS-HA3D, and CS-HAHT, a double mutant of the NH2 terminus and domain III. As judged by immunofluorescence of transfected skeletal muscle fibers, only the double CS-HA mutant showed a homogeneous distribution at the sarcomeric I band, i.e., it did not segregate to TC. As shown by subfractionation of microsomes derived from transfected skeletal muscles, CS-HAHT was largely associated to longitudinal SR whereas CS-HA was concentrated in TC. In C2C12 myotubes, as judged by immunofluorescence, not only CS-HAHT but also CS-HA3D and CS-HA2D were not sorted to developing SR. Condensation competence, a property referable to CS oligomerization, was monitored for the several CS-HA mutants in C2C12 myoblasts, and only CS-HA3D was found able to condense. Together, the results indicate that 1) there are at least two targeting sequences at the NH2 terminus and domain III of CS, 2) SR-specific target and structural information is contained in these sequences, 3) heterologous interactions with junctional SR proteins are relevant for segregation, 4) homologous CS-CS interactions are involved in the overall targeting process, and 5) different targeting mechanisms prevail depending on the stage of SR differentiation. protein-protein interactions; oligomerization; intracellular sorting  相似文献   

14.
Our previous studieshave shown that inhibition of polyamine biosynthesis increases thesensitivity of intestinal epithelial cells to growth inhibition inducedby exogenous transforming growth factor- (TGF-). This study wentfurther to determine whether expression of the TGF- receptor genesis involved in this process. Studies were conducted in the IEC-6 cellline, derived from rat small intestinal crypt cells. Administration of-difluoromethylornithine (DFMO), a specific inhibitor of ornithinedecarboxylase (the rate-limiting enzyme for polyamine synthesis), for 4 and 6 days depleted cellular polyamines putrescine, spermidine, andspermine in IEC-6 cells. Polyamine depletion by DFMO increased levelsof the TGF- type I receptor (TGF-RI) mRNA and protein but had noeffect on the TGF- type II receptor expression. The inducedTGF-RI expression after polyamine depletion was associated with anincreased sensitivity to growth inhibition induced by exogenous TGF-but not by somatostatin. Extracellular matrix laminin inhibited IEC-6cell growth without affecting the TGF- receptor expression. Lamininconsistently failed to induce the sensitivity of TGF--mediatedgrowth inhibition. In addition, decreasing TGF-RI expression bytreatment with retinoic acid not only decreased TGF--mediated growthinhibition in normal cells but also prevented the increased sensitivityto exogenous TGF- in polyamine-deficient cells. These resultsindicate that 1) depletion of cellular polyamines by DFMOincreases expression of the TGF-RI gene and 2) increasedTGF-RI expression plays an important role in the process throughwhich polyamine depletion sensitizes intestinal epithelial cells togrowth inhibition induced by TGF-.

  相似文献   

15.
v5-Integrin is the sole integrin receptor at the retinal pigment epithelium (RPE)-photoreceptor interface and promotes RPE phagocytic signaling to the tyrosine kinase Mer tyrosine kinase (MerTK) once a day in response to circadian photoreceptor shedding. Herein we identify a novel role for v5-integrin in permanent RPE-photoreceptor adhesion that is independent of v5's function in retinal phagocytosis. To compare retinal adhesion of wild-type and 5-integrin–/– mice, we mechanically separated RPE and neural retina and quantified RPE protein and pigment retention with the neural retina. Lack of v5-integrin with normal expression of other RPE integrins greatly weakened retinal adhesion in young mice and accelerated its age-dependent decline. Unexpectedly, the strength of wild-type retinal adhesion varied with a diurnal rhythm that peaked 3.5 h after light onset, after the completion of phagocytosis, when integrin signaling to MerTK is minimal. Permanent v5 receptor deficiency attenuated the diurnal peak of retinal adhesion in 5-integrin–/– mice. These results identify v5-integrin as the first RPE receptor that contributes to retinal adhesion, a vital mechanism for long-term photoreceptor function and viability. Furthermore, they indicate that v5 receptors at the same apical plasma membrane domain of RPE cells fulfill two separate functions that are synchronized by different diurnal rhythms. circadian rhythm; knockout; photoreceptors; retinal pigment epithelium  相似文献   

16.
The hypothesisthat amiloride-sensitive Na+channels (ENaC) are involved in cell volume regulation was tested.Anisosmotic ND-20 media (ranging from 70 to 450 mosM) were used tosuperfuse Xenopus oocytes expressing-rat ENaC (-rENaC). Whole cell currents werereversibly dependent on external osmolarity. Under conditions ofswelling (70 mosM) or shrinkage (450 mosM), current amplitude decreasedand increased, respectively. In contrast, there was no change incurrent amplitude of H2O-injectedoocytes to the above osmotic insults. Currents recorded from-rENaC-injected oocytes were not sensitive to externalCl concentration or to theK+ channel inhibitorBaCl2. They were sensitive toamiloride. The concentration of amiloride necessary to inhibit one-halfof the maximal rENaC current expressed in oocytes(Ki; apparentdissociation constant) decreased in swollen cells and increased inshrunken oocytes. The osmotic pressure-inducedNa+ currents showed propertiessimilar to those of stretch-activated channels, including inhibition byGd3+ andLa3+, and decreased selectivityfor Na+.-rENaC-expressing oocytes maintained a nearly constant cell volume in hypertonic ND-20. The present study is the firstdemonstration that -rENaC heterologously expressed inXenopus oocytes may contribute tooocyte volume regulation following shrinkage.

  相似文献   

17.
We studied the effects of protein kinase C (PKC) activation onendothelial cell surface expression and function of the proteolytically activated thrombin receptor 1 (PAR-1). Cell surface PAR-1 expression was assessed by immunofluorescence (using anti-PAR-1 monoclonal antibody), and receptor activation was assessed by measuring increases in cytosolic Ca2+ concentration inhuman dermal microvascular endothelial cells (HMEC) exposed to-thrombin or phorbol ester,12-O-tetradecanoylphorbol-13-acetate (TPA).Immunofluorescence showed that thrombin and TPA reduced the cellsurface expression of PAR-1. Prior exposure of HMEC to thrombin for 5 min desensitized the cells to thrombin, indicating homologous PAR-1desensitization. In contrast, prior activation of PKC with TPA produceddesensitization to thrombin and histamine, indicatingheterologous PAR-1 desensitization. Treatment of cells withstaurosporine, a PKC inhibitor, fully prevented heterologous desensitization, whereas thrombin-induced homologous desensitization persisted. Depletion of PKC isozymes(PKCI andPKCII) by transducing cellswith antisense cDNA of PKCIprevented the TPA-induced decrease in cell surface PAR-1 expression andrestored ~60% of the cytosolic Ca2+ signal in response tothrombin. In contrast, depletion of PKC isozymes did not affect theloss of cell surface PAR-1 and induction of homologous PAR-1desensitization by thrombin. Therefore, homologous PAR-1desensitization by thrombin occurs independently of PKC isozymes,whereas the PKC-activated pathway is important in signaling heterologous PAR-1 desensitization in endothelial cells.

  相似文献   

18.
Growthfactors affect a variety of epithelial functions. We examined theability of TGF- to modulate epithelial ion transport andpermeability. Filter-grown monolayers of human colonic epithelia, T84and HT-29 cells, were treated with TGF- (0.1-100 ng/ml,15 min-72 h) or infected with an adenoviral vector encodingTGF- (Ad-TGF) for 144 h. Ion transport (i.e., short-circuitcurrent, Isc) and transepithelial resistance(TER) were assessed in Ussing chambers. Neither recombinant TGF- norAd-TGF infection affected baseline Isc;however, exposure to 1 ng/ml TGF- led to a significant (30-50%) reduction in the Isc responses toforskolin, vasoactive intestinal peptide, and cholera toxin (agentsthat evoke Cl secretion via cAMP mobilization) and to thecell-permeant dibutyryl cAMP. Pharmacological analysis of signalingpathways revealed that the inhibition of cAMP-driven epithelialCl secretion by TGF- was blocked by pretreatment withSB-203580, a specific inhibitor of p38 MAPK, but not by inhibitors ofJNK, ERK1/2 MAPK, or phosphatidylinositol 3'-kinase. TGF- enhanced the barrier function of the treated monolayers by up to threefold asassessed by TER; however, this event was temporally displaced from thealtered Isc response, being statisticallysignificant only at 72 h posttreatment. Thus, in addition toTGF- promotion of epithelial barrier function, we show that thisgrowth factor also reduces responsiveness to cAMP-dependentsecretagogues in a chronic manner and speculate that this serves as abraking mechanism to limit secretory enteropathies.

  相似文献   

19.
Changes in the synthesis and activity of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are associated with myocardial remodeling. Here we measured the expression and activity of MMPs and TIMPs, and tested the hypothesis that increased MMP activity plays a proapoptotic role in -adrenergic receptor (-AR)-stimulated apoptosis of adult rat ventricular myocytes (ARVMs). -AR stimulation (isoproterenol, 24 h) increased mRNA levels of MMP-2 and TIMP-1 while it decreased TIMP-2 mRNA levels as analyzed by real-time PCR. Western blot analysis, immunocytochemical analysis, in-gel zymography, and MMP-2 activity assay confirmed -AR-stimulated increases in MMP-2 protein levels and activity. Inhibition of MMPs using GM-6001 (a broad-spectrum inhibitor of MMPs), SB3CT (inhibitor of MMP-2), and purified TIMP-2 inhibited -AR-stimulated apoptosis as determined by TdT-mediated dUTP nick end labeling staining. Treatment with active MMP-2 alone increased the number of apoptotic cells. This increase in MMP-2-mediated apoptosis was inhibited by GM-6001 and SB3CT pretreatment. Coimmunoprecipitation studies indicated increased physical association of MMP-2 with 1-integrins after -AR stimulation. Inhibition of MMP-2 using SB3CT or stimulation of 1-integrin signaling using laminin inhibited the increased association of MMP-2 with 1-integrins. -AR stimulation increased poly-ADP-ribose-polymerase cleavage, which was inhibited by inhibition of MMP-2. These data suggest the following: 1) -AR stimulation increases MMP-2 expression and activity and inhibits TIMP-2 expression; 2) inhibition of MMPs, most likely MMP-2, inhibits -AR-stimulated apoptosis; and 3) the apoptotic effects of MMP-2 may be mediated, at least in part, via its interaction with 1 integrins and poly-ADP-ribose-polymerase cleavage. integrins; poly-ADP-ribose-polymerase  相似文献   

20.
P-type ATPasesrequire both - and -subunits for functionalactivity. Although an -subunit for colonic apical membraneH-K-ATPase (HKc) has been identified and studied, its -subunithas not been identified. We cloned putative -subunit rat colonicH-K-ATPase (HKc) cDNA that encodes a 279-amino-acid protein with asingle transmembrane domain and sequence homology to other rat-subunits. Northern blot analysis demonstrates that this HKc isexpressed in several rat tissues, including distal and proximal colon,and is highly expressed in testis and lung. HKc mRNA abundance is upregulated threefold compared with normal in distal colon but notproximal colon, testis, or lung of K-depleted rats. In contrast, Na-K-ATPase 1 mRNA abundance isunaltered in distal colon of K-depleted rats. Na depletion, which alsostimulates active K absorption in distal colon, does not increaseHKc mRNA abundance. Western blot analyses using a polyclonalantibody raised to a glutathioneS-transferase-HKc fusion proteinestablished expression of a 45-kDa HKc protein in both apical andbasolateral membranes of rat distal colon, but K depletion increasedHKc protein expression only in apical membranes. Physicalassociation between HKc and HKc proteins was demonstrated byWestern blot analysis performed with HKc antibody onimmunoprecipitate of apical membranes of rat distal colon and HKcantibody. Tissue-specific upregulation of this -subunit mRNA inresponse to K depletion, localization of its protein, its upregulationby K depletion in apical membranes of distal colon, and its physicalassociation with HKc protein provide compelling evidence that HKcis the putative -subunit of colonic H-K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号