首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epidermal growth factor (EGF) receptor (EGFR) is involved in various basic biochemical pathways and is thus thought to play an important role in cell migration. We examined the effect of EGF on motility, migration, and morphology of a human adenocarcinoma cell line CAC-1. EGF treatment increased the motility of cervical adenocarcinoma cells and promoted migration of the cells on fibronectin and type IV collagen. EGF induced morphological changes with lamellipodia during EGFR-mediated motility. The results of an immunoprecipitation study showed that EGF up-regulated the expression of alpha2beta1-integrin in a dose-dependent manner. EGF-induced cell migration was blocked by alpha2beta1-integrin antibody. Our results also showed that EGF treatment stimulated the level of tyrosine dephosphorylation of FAK, which is required for EGF-induced changes in motility, migration, and cell morphology. A tyrosine kinase inhibitor (ZD1839) blocked EGF-induced changes in cervical adenocarcinoma cells. The results suggest that EGF promotes cell motility and migration and increases the expression of alpha2beta1-integrin, possibly by decreasing FAK phosphorylation.  相似文献   

3.
Tetraspanin CD82 has been implicated in integrin-mediated functions such as cell motility and invasiveness. Although tetraspanins associate with integrins, it is unknown if and how CD82 regulates the functionality of integrins. In this study, we found that Du145 prostate cancer cells underwent morphogenesis on the reconstituted basement membrane Matrigel to form an anastomosing network of multicellular structures. This process entirely depends on integrin alpha6, a receptor for laminin. After CD82 is expressed in Du145 cells, this cellular morphogenesis was abolished, indicating a functional cross-talk between CD82 and alpha6 integrins. Interestingly, antibodies against other tetraspanins expressed in Du145 cells such as CD9, CD81, and CD151 did not block this integrin alpha6-dependent morphogenesis. We further found that CD82 significantly inhibited cell adhesion on laminin 1. Notably, the level of alpha6 integrins on the cell surface was down-regulated upon CD82 expression, although total cellular alpha6 protein levels remained unchanged in CD82-expressing cells. This down-regulation indicates that the diminished cell adhesiveness of CD82-expressing Du145 cells on laminin likely resulted from less cell surface expression of alpha6 integrins. As expected, CD82 physically associated with the integrin alpha6 in Du145-CD82 transfectant cells, suggesting that the formation of the CD82-integrin alpha6 complex reduces alpha6 integrin cell surface expression. Finally, the internalization of cell surface integrin alpha6 is significantly enhanced upon CD82 expression. In conclusion, our results indicate that 1) CD82 attenuates integrin alpha6 signaling during a cellular morphogenic process; 2) the decreased surface expression of alpha6 integrins in CD82-expressing cells is likely responsible for the diminished adhesiveness on laminin and, subsequently, results in the attenuation of alpha6 integrin-mediated cellular morphogenesis; and 3) the accelerated internalization of integrin alpha6 upon CD82 expression correlates with the down-regulation of cell surface integrin alpha6.  相似文献   

4.
More than 40% of patients with luminal breast cancer treated with endocrine therapy agent tamoxifen demonstrate resistance. Emerging evidence suggests tumor initiating cells (TICs) and aberrant activation of Src and Akt signaling drive tamoxifen resistance and relapse. We previously demonstrated that aryl hydrocarbon receptor ligand aminoflavone (AF) inhibits the expression of TIC gene α6-integrin and disrupts mammospheres derived from tamoxifen-sensitive breast cancer cells. In the current study, we hypothesize that tamoxifen-resistant (TamR) cells exhibit higher levels of α6-integrin than tamoxifen-sensitive cells and that AF inhibits the growth of TamR cells by suppressing α6-integrin–Src–Akt signaling. In support of our hypothesis, TamR cells and associated mammospheres were found to exhibit elevated α6-integrin expression compared with their tamoxifen-sensitive counterparts. Furthermore, tumor sections from patients who relapsed on tamoxifen showed enhanced α6-integrin expression. Gene expression profiling from the TCGA database further revealed that basal-like breast cancer samples, known to be largely unresponsive to tamoxifen, demonstrated higher α6-integrin levels than luminal breast cancer samples. Importantly, AF reduced TamR cell viability and disrupted TamR mammospheres while concomitantly reducing α6-integrin messenger RNA and protein levels. In addition, AF and small interfering RNA against α6-integrin blocked tamoxifen-stimulated proliferation of TamR MCF-7 cells and further sensitized these cells to tamoxifen. Moreover, AF reduced Src and Akt signaling activation in TamR MCF-7 cells. Our findings suggest elevated α6-integrin expression is associated with tamoxifen resistance and AF suppresses α6-integrin–Src–Akt signaling activation to confer activity against TamR breast cancer.  相似文献   

5.
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p < 0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, premalignant cells.  相似文献   

6.
This paper presents an in situ impedance chip system, which allows studying the effects of drugs on the behaviors of living cell in real-time. A new label-free measurement approach is introduced, which enables to assess the extent of the adhesion of a cell population to the extracellular matrix (ECM)-coated microelectrode array, by adding together all the impedance changes from individually controlled microelectrodes. A high sensitivity was demonstrated and allowed us to monitor cell attachment with the resolution of a "few cells". The dose and pre-incubation time effects of antibodies against beta1-integrin and its subunit alpha2beta1-integrin on the adhesion behavior of NCI-H460 lung cancer cells to collagen type I was extensively studied. Results show that both anti-beta1-integrin and anti-alpha2beta1-integrin inhibit NCI-H460 cells attachment to collagen I. This indicates that beta1-integrin is present on the surface of NCI-H460 cancer cells, and that its subunit alpha2beta1 significantly affects NCI-H460 cells attachment on collagen I.  相似文献   

7.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is alpha7beta1-integrin, which is structurally related to alpha6beta1. It occurs in three cytoplasmic splice variants (alpha7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the alpha7beta-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the alpha7-mediated cell motility, we expressed the three alpha7-chain cytoplasmic splice variants, as well as alpha6A- and alpha6B-integrin subunits in HEK293 cells. Here we show that all three alpha7 splice variants (containing the X2 domain), as well as alpha6A and alpha6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from alpha7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only alpha7-expressing cells showed enhanced motility, whereas cells transfected with alpha6A and alpha6B neither attached nor migrated on laminin-2. Adhesion of alpha7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for alpha7. Expression of the two extracellular splice variants alpha7X1 and alpha7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas alpha7X2B promoted cell migration on both laminin-1 and laminin-2, alpha7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of alpha6-integrin subunits after alpha7A or -B transfection; also, surface expression of alpha1-, alpha3-, and alpha5-integrins was significantly reduced. These results demonstrate selective responses of alpha6- and alpha7-integrins and of the alpha7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

8.
9.
The expression pattern of laminin (Ln) alpha1 chain has been a controversial topic due to discrepancies between mRNA and protein studies. Recently it was reported that the monoclonal antibody 4C7, previously thought to recognize Ln alpha1 chain, actually detects Ln alpha5 chain. This finding makes it necessary to reestimate the role of Ln alpha1 chain and to compare the expression and functions of Ln alpha1 and alpha5 chains. We studied the expression of Ln alpha1 and alpha5 chains and production of Ln-1 and Ln-10 in cultured human carcinoma cells. Ln alpha1 chain mRNA was detected in JAR choriocarcinoma cells and in all four renal cell carcinoma cell lines studied. In contrast, pancreatic, colon, and lung alveolar carcinoma cell lines did not express or produce Ln alpha1 chain, suggesting that Ln-1 (alpha1 beta1 gamma1) is produced only by certain carcinoma cells. Ln alpha5 chain mRNA was expressed in all carcinoma cells, but was not incorporated into extracellular matrix in vitro, as shown with JAR cells. Immunoprecipitation of metabolically labeled cells showed that cells expressing Ln alpha1 mRNA also produced 400-kDa Ln alpha1 chain, whereas all cells produced 380-kDa Ln alpha5 chain. Adhesion to Ln-1 was inhibited by a functionally blocking antibody against alpha6-integrin subunit, whereas adhesion to Ln-10 was inhibited by an antibody against alpha6-integrin in JAR cells and by an antibody against alpha3-integrin in PANC-1 cells. The results suggest that Ln-10 is a ubiquitously expressed Ln isoform in carcinoma cells, and the mechanism of adhesion to Ln-10 is cell-type specific.  相似文献   

10.
Cervical cancer is a major world health problem for women, but the pathophysiology of this disease has received scant attention. Here we show that the growth and invasion of cervical cancer cells are strongly linked the expression and activity of the KCl cotransporter (KCC), an important regulator of the ionic and cellular osmotic homeostasis. Functional assays of KCl cotransport activation by osmotic swelling, staurosporine, and N-ethylmaleimide indicate that removal of the N-terminal 117 amino acids from KCC1 produces a dominant-negative loss-of-function phenotype for KCl cotransport in human cervical cancer cells. The capability for regulatory volume decrease is much attenuated in the loss-of-function KCC mutant cervical cancer cells. The loss-of-function KCC mutant cervical cancer cells exhibit inhibited cell growth accompanied by decreased activity of the cell cycle gene products retinoblastoma and cdc2 kinase. Reduced cellular invasiveness is in parallel by reduced expression of alpha v beta 3 and alpha 6 beta 4 integrins, accompanied by decreased activity of matrix metalloproteinase 2 and 9. Inhibition of tumor growth in SCID mice confirms the crucial role of KCC in promoting cervical cancer growth and invasion. Thus, blockade of KCl cotransport may be a useful therapeutic adjunctive strategy to retard or prevent cervical cancer invasion.  相似文献   

11.
12.
The urokinase-type plasminogen activator (uPA) in concert with other proteolytic enzymes plays a critical role in cartilage degradation during osteoarthritis. Urokinase receptor (uPAR), a glycosyl-phosphatidylinositol-linked glycoprotein present on the cell surface of various cell types such as cancer cells, fibroblasts, synoviocytes, and chondrocytes, is a key regulator of the plasmin-mediated pericellular proteolysis. Recently, in arthritic synovial tissue increased uPAR expression has been detected. By immunohistochemical analysis we observed, in addition, enhanced expression of uPAR in chondrocytes of arthritic samples of human cartilage compared to non-arthritic controls. Using in vitro cultured human chondrocytes, we analyzed whether uPAR is associated with structural proteins, which are known to be involved in cell signaling and activation. uPAR in phorbol-12-myristate-13-acetate-stimulated chondrocytes colocalized with caveolin as well as beta 1-integrin, as demonstrated by double immunostaining with specific antibodies. Furthermore, uPAR was present in caveolae-like structures of chondrocytes as detected by immunoelectron microscopy. Finally, both caveolin and beta 1-integrin were coprecipitated with uPAR-specific antibodies from cell extracts suggesting that these proteins may form functional complexes in human chondrocytes. The localization of uPAR in caveolae and its close association with caveolin and beta 1-integrin points to a significance of uPAR-mediated signaling pathways in human chondrocytes.  相似文献   

13.
Injury of vascular smooth muscle cells (VSMCs) by allylamine (AAM) leads to phenotypic changes associated with atherogenic progression including increased proliferation, migration, and alterations in cell adhesion. In the present study, the relationship between AAM-induced vascular injury and expression of the alpha(7)-integrin subunit was investigated. The alpha(7)-mRNA and protein expression were examined using real-time RT-PCR, fluorescence-activated cell sorting analysis (FACS), immunohistochemistry, and immunoblotting. In cultured VSMCs from aortas of AAM-treated rats (70 mg/kg for 20 days), alpha(7)-mRNA levels were increased more than twofold compared with control cells. No change was seen in beta(1)-integrin expression. FACS analysis revealed increased cell surface expression of alpha(7)-protein (25 +/- 9%; *P < 0.05). AAM treatment of naive VSMCs enhanced alpha(7)-mRNA expression (2.4 +/- 0.7-fold, mean +/- SE; *P < 0.05). The increased alpha(7)-mRNA expression was attenuated by the amine oxidase inhibitor semicarbazide and the antioxidant pyrrolidine dithiocarbamate, which confirms a role for oxidative stress in modulating alpha(7)-expression. In vivo alpha(7)-mRNA and protein expression were enhanced in the aortas of AAM-treated rats. In addition, increased alpha(7)-integrin expression facilitated AAM VSMC adhesion to laminin more efficiently compared with control (51 +/- 2%; *P < 0.05). Chemical injury induced by AAM significantly enhances alpha(7)-integrin expression in VSMCs. These findings implicate for the first time the expression of alpha(7)-integrin during the response of VSMCs to vascular injury.  相似文献   

14.
alpha(4)beta(1)-Integrin plays a pivotal role in cell migration in vivo. This integrin has been shown to regulate the front-back polarity of migrating cells via localized inhibition of alpha(4)-integrin/paxillin binding by phosphorylation at the alpha(4)-integrin cytoplasmic tail. Here, we demonstrate that alpha(4)beta(1)-integrin regulates directionally persistent cell migration via a more complex mechanism in which alpha(4)-integrin phosphorylation and paxillin binding act via both cooperative and independent pathways. We show that, in response to shear flow, alpha(4)beta(1)-integrin binding to the CS-1 region of fibronectin was necessary and sufficient to promote directionally persistent cell migration when this integrin was ectopically expressed in CHO cells. Under shear flow, the alpha(4)beta(1)-integrin-expressing cells formed a fan shape with broad lamellipodia at the front and retracted trailing edges at the back. This "fanning" activity was enhanced by disrupting paxillin binding alone and inhibited by disrupting phosphorylation alone or together with disrupting paxillin binding. Notably, the phosphorylation-disrupting mutation and the double mutation resulted in the formation of long trailing tails, suggesting that alpha(4)-integrin phosphorylation is required for trailing edge retraction/detachment independent of paxillin binding. Furthermore, the stable polarity and directional persistence of shear flow-stimulated cells were perturbed by the double mutation but not the single mutations alone, indicating that paxillin binding and alpha(4)-integrin phosphorylation can facilitate directionally persistent cell migration in an independent and compensatory manner. These findings provide a new insight into the mechanism by which integrins regulate directionally persistent cell migration.  相似文献   

15.
Integrins play a major role in cell adhesion and migration. Previous work reported that a cleaved form of integrin alpha6 (alpha6p) was detected in invasive human prostate cancer tissue, absent in normal prostate tissue and was produced by urokinase-type Plasminogen Activator (uPA) in a plasmin-independent manner. Using site-directed mutagenesis we identified amino acid residues R594 and R595, located in the "stalk" region of integrin alpha6, as essential for cleavage. The cleavage site is located on the extracellular region of the protein between the beta-barrel domain and the thigh domain. Prostate cancer cells (PC3N) were stably transfected to overexpress the cleavable, wild-type (PC3N-alpha6-WT) or the non-cleavable form of integrin alpha6 (PC3N-alpha6-RR). The number of cells invading laminin 111- and laminin 332-coated filters by PC3N-alpha6-WT cells increased by threefold as compared to PC3N-alpha6-RR cells. Plasminogen activator inhibitor-1 (PAI-1) reduced the invasion of PC3N-alpha6-WT cells by approximately 42% through laminin 332-coated filters and plasmin inhibitor aprotinin had no significant effect. Linear cell migration increased production of integrin alpha6p in the PC3N-alpha6-WT cells and not in the PC3N-alpha6-RR cells and 32% of the PC3N-alpha6-WT cells migrated on laminin 111 in the linear migration assay as compared to the 5% PC3N-alpha6-RR cells. These data taken together suggest that the uPA-mediated cell surface cleavage of the alpha6 integrin extracellular domain is involved in tumor cell invasion and migration on laminin.  相似文献   

16.
The issue of whether aberrant expression of β1-integrin is associated with cancer progression and development of resistance to cytotoxic therapy is of considerable interest. Studies to date have shown that the anchorage-independent survival of cancer is attributed, in part, to epithelial-to-mesenchymal transition (EMT). Here, we have reported a novel alternative mechanism of anchorage-independent survival of cancer cells. Cell lines derived from head and neck cancer patients (AMC-HN-3 and AMC-HN-9) and the well-known EMT cancer cell line, MDA-MB231, were examined. The EMT features of AMC-HN-9 cells were comparable to those of MDA-MB231, whereas AMC-HN-3 cells showed no EMT characteristics. Although the pattern and degree of β1-integrin expression were similar in all three cell lines, sensitivities of the cells to β1-integrin knockdown with small interfering RNA (siRNA) were different. Cancer cells with no EMT features underwent cell death to a more significant extent following β1-integrin silencing than those with EMT. Intriguingly, we observed reactive activation of the p53-p21 pathway after β1-integrin silencing in AMC-HN-9 cells lacking an apparent cell death response. Simultaneous knockdown of wild-type p53 and β1-integrin in this cell line promoted cell death. Our data collectively indicate that β1-integrin-related cell death is closely associated with EMT phenotypes and activation of the p53-p21 pathway is partly involved in the acquisition of resistance to apoptosis induced by β1-integrin silencing. Further clarification of the mechanisms underlying p53 integration with β1-integrin signaling may facilitate the development of novel anti-cancer strategies.  相似文献   

17.
Long non-coding RNAs have been reported to play crucial roles in tumorigenesis including cervical cancer. LINC00037 has been identified as a significant regulator in several cancers. Our study was aimed to investigate the function of LINC00037 in cervical cancer progression. LINC00037 was significantly downregulated in human cervical cancer cells (HeLa, HCC94, HT-3, Caski, and SiHa cells) compared with the ectocervical epithelial cells (End1/E6E7 cells). Overexpression of LINC00037 was able to inhibit cervical cancer cell proliferation, induce cell apoptosis, and restrain the cell migration/invasion capacity. Reversely, knockdown of LINC00037 exhibited an opposite process in vitro. mTOR has been recognized as an atypical serine/threonine kinase that is involved in regulating significant cellular functions. In our present study, we observed that the mTOR signaling pathway was strongly activated in human cervical cancer cells. Meanwhile, upregulation of LINC00037 contributed to the inactivation of mTOR signaling whereas downregulation of LINC00037 activated the pathway. Subsequently, in vivo animal models using SiHa cells were established and we proved that LINC00037 repressed cervical cancer progression via targeting the mTOR signaling pathway. All these findings implied that LINC00037 could regulate cervical cancer pathogenesis via mTOR signaling. In conclusion, a novel role of LINC00037 was manifested in cervical cancer progression.  相似文献   

18.
Bone metastasis is a common sequelae of breast cancer and the interaction of alpha v beta3-integrin with osteopontin (OPN) found in the extracellular matrix of mineralized tissues is implicated in this process. The integrin-dependent proadhesive and promigratory functions of OPN are particularly attributed to the 40 kD N-terminal fragment that derives upon matrix metalloproteinase (MMP) cleavage. Based on the broad repertoire of interactions between Staphylococcus aureus extracellular adherence protein (Eap) and host components, we here characterized Eap to specifically interact with recombinant full-length OPN and the 40 kD N-terminal MMP cleavage fragment, but not with the 32 kD or the 25 kD C-terminal fragments of OPN. Eap thereby prevented the OPN/alpha v beta3-integrin interaction, as well as the alpha v beta3-integrin-dependent adhesion of MDA-MB-231 breast cancer cells to full-length OPN or to the 40 kD fragment and the migration of these cells towards OPN. Furthermore, Eap treatment markedly impaired the development of osseous metastasis of human MDA-MB-231 cells in vivo. Taken together, Eap may represent an attractive novel treatment for the prevention of breast cancer bone metastasis.  相似文献   

19.
20.
Transforming growth factor-beta (TGF-beta) induces a marked decrease in adhesion of MG-63 human osteosarcoma cells to laminin-coated surfaces, but does not significantly alter adhesion to fibronectin- or collagen-coated surfaces. We provide evidence that this effect is due to a switch in the repertoire of cell adhesion receptors in response to TGF-beta. MG-63 cells express high levels of alpha 3 beta 1-integrin, which is a polyspecific laminin/collagen/fibronectin receptor, and low levels of alpha 2 beta 1- and alpha 5 beta 1-integrins, which are collagen and fibronectin receptors, respectively. No other integrins of the beta 1-class could be detected in MG-63 cells. Treatment with TGF-beta 1 induces a marked (approximately 60%) decrease in the level of expression of alpha 3-integrin subunit mRNA and protein and a concomitant 8-fold increase in alpha 2-subunit expression. These responses become maximal 7-12 h after addition of TGF-beta 1 to the cells. Expression of alpha 5- and beta 1-integrin subunits also increases in response to TGF-beta 1, but to a lesser extent than alpha 2-subunit expression. Thus, as a result of TGF-beta action, the alpha 2 beta 1-collagen and alpha 5 beta 1-fibronectin receptors replace the alpha 3 beta 1-laminin/collagen/fibronectin receptor as the predominant integrins of the beta 1-class in MG-63 cells. These results suggest that one of the effects of TGF-beta is to modify the adhesive behavior of certain tumor cells by changing the binding specificity of the complement of integrins that they express.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号