首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen diffusion resistance of Lupinus albus (L.) cv. Multoluparoot nodules was increased by subjection to short-term stresses;lowering rhizosphere temperature from 25 to 16 °C (2 h),detopping plants (3 h), darkening plants (21 h) or exposingroots to 20 mol m–3 KN03 for 2, 4 or 6 d. Microscopicobservations and measurements showed that this resulted in thearea of open intercellular spaces within the inner cortex beingreduced due to both cell expansion and increased productionof an occluding glycoprotein. Electrophoretic and Western Blotanalysis using the monoclonal antibodies MAC236 and MAC265 showedtwo distinct glycoprotein antigens with molecular weights of240 and 135 kDa, respectively. Both antigens are localized withinintercellular spaces of the inner cortex. The amount of glycoproteinwas determined using either ELISA, with MAC265, or quantificationof immunolabelling with MAC236. This immunolabelling also localizedthe glycoprotein within globules adhering to the inside of theinner cortical cell walls. Key words: Oxygen diffusion resistance, glycoprotein, nodules, nitrogen fixation, Lupinus albus  相似文献   

2.
Nodulated white lupins (Lupinus albus L. cv. Multolupa) weresubject to either darkening for 12 h, followed by 24 h recoveryin light, or to 50% O2 for 30 min. For each treatment, noduleswere harvested at intervals for analysis by light and electronmicroscopy and determination of glycoprotein content using EnzymeLinked Immunosorbent Assays (ELISA). This allowed for an analysisof the sequence of events causing an increase in intercellularspace occlusion within the inner cortex. The temporal sequencein response to darkening appears to be: (1) an initial rapidincrease in the detectable levels of intracellular glycoprotein,due to either a state change or de novo synthesis, (2) a concomitantincrease in the volume of thickened cell walls, causing a reductionof intercellular space volume and (3) after 1–3 h a releaseof glycoprotein into the intercellular space network of theinner cortex, accompanied (and possibly spread) by the continuedconstriction of the spaces due to cell wall and cell contentexpansion. The results for exposure to 50% O2 showed a similar,but much more rapid, sequence of events, operating within 15–30min. The main difference between the two sequences was the lackof expansion of thickened cell walls with increased pO2. Also,it was possible to detect glycoprotein within cell walls followingexposure to 50% O2 but not following darkening. These observationsare discussed in relation to proposed mechanisms for the operationof a variable oxygen diffusion barrier in legume nodules. Key words: Oxygen diffusion resistance, glycoprotein, nodules, Lupinus albus  相似文献   

3.
The effects of different NaCl concentrations on the growth andnitrogen fixation activity of white lupin (Lupinus albus [L.])was studied over a 6 d period. Plant growth parameters, photosynthesisand shoot respiration were unaffected by NaCl concentrationsup to 150 mol m–3. However, nitrogenase activity decreasedwith increased NaCl concentration up to 100 mol m–3, whilstthe O2 diffusion resistance increased with 100 mol m–3NaCl, but showed no further change when 150 mol m–3 NaClwas applied for 6 d. Increases in NaCl concentration decreasednodular starch content while increasing sucrose content, suggestingan osmotic regulation. These changes were associated with a77% decrease in sucrose synthase activity. The effect on theO2 diffusion resistance was paralleled by changes in glycoproteincontent of the nodules, as determined by immunogold localizationand ELISA. X-ray microanalysis studies of nodules showed that,following a 6 d exposure to 150 mol m–3 NaCl, Na+ ionswere largely excluded from the infected zone, whilst only lowlevels of Cl- ions penetrated into this region. Na+ entry intoroots and leaves was also at a low level. Leghaemoglobin contentdecreased with saline stress, as did superoxide dismutase; whichdecreased by 36% following exposure to 100 mol m–3 saltfor 6 d. These results are discussed in relation to the relativesalt tolerance of the Multolupa/ISLU-16 symbiosis. Key words: Salt stress, nodules, nitrogen fixation, oxygen diffusion, carbohydrates, Lupinus albus  相似文献   

4.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

5.
This research examined the hypothesis that as cacti evolve tothe leafless condition, the stem epidermis and cortex becomemore leaflike and more compatible with a photosynthetic role.All cacti in the relict genus Pereskia have non-succulent stemsand broad, thin leaves. All members of the derived subfamilyCactoideae are ‘leafless’, having an expanded cortexthat is the plant's only photosynthetic tissue. In Pereskia,leaves have a high stomatal density (mean: 50.7 stomata mm–2in the lower epidermis, 38.1 mm–2 in the upper epidermis),but stems have low stomatal densities (mean: 11.3 mm 2, threeof the species have none). Stems of Cactoideae have a high stomataldensity (mean: 31.1 mm–2, all species have stomata). Theouter cortex cells of stems of Cactoideae occur in columns,forming a palisade cortex similar to a leaf palisade parenchyma.In this palisade cortex, the fraction of tissue volume availablefor gas diffusion has a mean volume of 12.9%, which is identicalto that of Pereskia leaf palisade parenchyma. Pereskia stemcortex is much less aerenchymatous (mean: 5.3% of cortex volume).Cactoideae palisade cortex has a high internal surface density(0.0207 cm2 cm–2 which is higher than in Pereskia stemcortex (0.0150 cm2 cm–3) but not as high as Pereskia leafpalisade parenchyma (0.0396 cm2 cm–3). Pereskia stem cortexhas no cortical bundles, but Cactoideae cortexes have extensivenetworks of collateral vascular bundles that resemble leaf veins. Cactaceae, cactus, intercellular space, stomatal density, internal surface/volume, evolution  相似文献   

6.
Tracer amounts of atmospheric [13N]-Iabelled ammonia gas, wereabsorbed by leaves of Lupinus albus and Helianthus annuus inboth the light and the dark. Exogenous [13N]-ammonia was onlyabsorbed in the dark when the feeding occurred shortly aftera period of illumination and the tissue was not depleted ofits carbohydrate reserves (e.g. starch). Incorporation of the[13N]-ammonia appeared to occur via the leaf glutamine synthetase/glutamatesynthase (GS/GOGAT) cycle since 2.0 mol m–3 MSX, an inhibitorof the GS reduced uptake in both the light and dark. Photosyntheticincorporation of 11CO2 was not affected by this treatment Therate of movement of [13N]-assimilates in the petiole of attachedleaves of Helianthus and Lupinus was similar to that of the11Cl-photo assimilates. Export of both [13N] and [11C]-Iabelledassimilates from the leaf and movement in the petiole in boththe light and the dark was inhibited by source leaf anoxia (i.e.nitrogen gas). Translocation was re-established at the samerate when the feed leaf was exposed to gas containing more than2% O2 which permitted dark respiration to proceed. After aninitial feeding of either 11CO2 or [13N]-ammonia at ambient(21%) O2 exposure of the source leaf to 2% O2, or 50% O2 didnot alter the rates of translocation, indicating that changesin photosynthetic activity in the source leaf due to photorespiratoryactivity need not markedly alter, at least during the shortperiod, the loading and translocation of either [11C ] or [13N]-labelledleaf products. Key words: Translocation, CO2, NH3, Leaves, Helianthus annuus, Lupinus albus  相似文献   

7.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

8.
Hansen, A. P., Pate, J. S. and Atkins, C. A. 1987. Relationshipsbetween acetylene reduction activity, hydrogen evolution andnitrogen fixation in nodules of Acacia spp.: Experimental backgroundto assaying fixation by acetylene reduction under field conditions.—J.exp. Bot. 38: 1–12 Glasshouse grown, symbiotically-dependent seedlings of Acaciaalata R.Br., .A. extensa Lindl., and A. pulchella R.Br. wereexamined for acetylene reduction in closed assay systems usingundisturbed potted plants, excavated whole plants, nodulatedroots or detached nodules. Nitrogenase activity declined sharplyover the first hour after exposure of detached nodules to acetylene(10% v/v in air), less steeply or not at all over a 3 h periodin assays involving attached nodules. Using detached nodules,rates of acetylene reduction, nitrogen (15N2) fixation, andhydrogen evolution in air (15N2) and acetylene-containing atmosphereswere measured in comparable 30 min assays. Total electron flowthrough nitrogenase in air was determined from rates of nitrogen(15N2) fixation ( ? 3) plus hydrogen evolution, that in thepresence of acetylene from rates of acetylene reduction andhydrogen evolution in air: acetylene. Values for the ratio ofelectron flow in air: acetylene to that in air ranged from 0?43to 0?83 in A. pulcheila, from 0?44 to 0?66 in A. alala and from0?37 to 0?70 in A. extensa, indicating substantial inhibitionof electron flow through nitrogenase of detached nodules byacetylene. Relative efficiencies of nitrogenase functioningbased on hydrogen evolution and acetylene reduction were from0?15 to 0?79, those based on nitrogen (15N2) fixation and hydrogenevolution from 0?53 to 0?87. Molar ratios of acetylene reducedto nitrogen (15N2) fixed were 2?82 ? 0?24, 201 ? 0?15, and 1?91? 0?11 (?s.e.; n = 7) for A. pulcheila,A. extensa and A. alata respectively A standard 5–10 min acetylene reduction assay, conductedon freshly detached unwashed nodules in daytime (12.00–14.00h), was calibrated for field use by comparing total N accumulationof seedlings with estimated cumulative acetylene reduction overa 7-week period of glasshouse culture. Molar ratios for acetylenereduced: nitrogen fixed using this arbitrary method were 3?58for A. alata, 4?82 for A. extensa and 1?60 for A. pulchella.The significance of the data is discussed. Key words: Acacia spp, nitrogenase functioning  相似文献   

9.
An extract from the roots of Lotus pedunculatus plants was foundto contain a compound toxic towards fast-growing Lotus rhizobia.This compound was identified as a flavolan, which has a prodeiphinidin:procyanidin ratio of 75:25. A fast-growing strain of Rhizobium(NZP2213) which forms ineffective root nodules on L. pedunculatuswas four times more sensitive to this flavolan (ED50 = 25 ?gml–1) than another strain (NZP2037, ED50 = 100 ?g ml–1)which forms effective root nodules on this species. The rootsof another Lotus species, L. tenuis, on which both strains ofRhizobium form effective root nodules, also contained a flavolan( 95% procyanidin) but both strains were relatively insensitiveto this flavolan (EDED50 = 350 to 500 ?g ml–1) L. pedunculatusplants bearing ineffective root nodules contained two to threetimes more flavolan in their roots (5–7 mg g–1 fr.wt.)than uninoculated control plants. Experiments with seven otherLotus species and with hybrid plants developed between L. pedunculatusand L. tenuis showed a relationship between the prodeiphinidin:procyanidin ratio of the flavolan in their roots and the effectivenessof root nodules formed on these plants by NZP2213. Quantitativebinding studies of the flavolan from L. pedunculatus to NZP2037and NZP2213 indicated that, while the affinity constants forbinding were similar for both strains, the surface of strainNZP2037 contained four times more binding sites than NZP2213,possibly correlating with this strain's ability to toleratehigher concentrations of this flavolan. It is suggested thatthe differential sensitivity of these two strains of Rhizobiumto flavolans is related to their ability to form effective rootnodules on Lotus species.  相似文献   

10.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

11.
Well-nodulated soya bean (Glycine max L.) plants were allowedto assimilate 13CO2 for 10 h in the light, under steady-stateconditions in which CO2 concentration and 13C abundance wereboth strictly controlled at constant levels. The respiratoryevolution of 13CO2 from roots and nodules and 13C incorporationinto various metabolic fractions were measured during the 13CO2feeding and subsequent 48 h chase period. CO2 respired from nodules was much more rapidly labelled with13C than that from roots. The level of labelling (percentageof carbon currently assimilated during the 13COM2 feeding period)of CO2 respired from nodules reached a maximum of about 87 percent after 4 h of steady-state l3CO2 assimilation and thereafterremained fairly constant. The absolute amount of labelled carbonevolved by the respiration of the nodules during the 10 h 13CO2feeding period was 1·5-fold that of root respiration.These results demonstrated that the currently assimilated (labelled)carbon was preferentially used to support nodule respiration,while root respiration relied considerably on earlier (non-labelled)carbon reserved in the roots. Sucrose pools were mostly composed of currently assimilatedcarbon in all tissues of the plants, since the levels of labellingaccounted for 86–91 per cent at the end of the 13CO2 feeding.In the nodules, the kinetics and levels of sucrose labellingwere in fairly good agreement with those of respired CO2, whilein the roots, the level of labelling of respired CO2 was significantlylower than that of sucrose. Succinate and malate were highly labelled in both roots andnodules but they were labelled much more slowly than sucroseand respired CO2. The kinetics and levels of labelling of theseKrebs cycle intermediates resembled those of major amino acidswhich are derived directly from Krebs cycle intermediates. Itis suggested that large fractions of organic acids in noduleswere physically separate from the respiration site. Glycine max L., Soya bean, 13CO2 assimilation, respiratory evolution of 13CO2, carbon metabolism in root nodules  相似文献   

12.
Plants of Lupinus albus were grown for 51 d under control (1.1mol m–3 NaCl) and saline (40 mol m–3 NaCl) conditions.Plants were harvested and changes of carbon, nitrogen and abscisicacid (ABA) contents of individual organs were determined 41d and 51 d after germination. In the period between the twoharvests xylem and phloem saps were collected and respirationand photosynthesis of individual organs were measured. Usingflows of carbon, C/ABA ratios and increments of ABA flows ofABA in phloem and xylem and rates of biosynthesis and degradationof ABA were calculated. Both under control and saline conditionsnet biosynthesis occurred in the root, the basal strata of leavesand in the inflorescence. Metabolic degradation of ABA tookplace in the stem internodes and apical leaf strata. Salt stress increased xylem transport of ABA up to 10-fold andphloem transport to the root up to 5-fold relative to that ofthe controls. A considerable amount of ABA in the xylem saporiginated from biosynthesis in the roots, i.e. 55% in salt-treatedand smaller than 28% in control plants. The remaining part ofABA in the xylem sap originated from the shoot: it was translocatedin the phloem from fully differentiated leaves towards the rootand from there it was recirculated back to the aerial partsof the plant. The data suggest that ABA may serve as a hormonalstress signal from the root system. Key words: Lupinus albus, salt stress, abscisic acid, long distance transport  相似文献   

13.
Soybean (Glycine max L. Merr) cv. Clarke plants inoculated withBradyrhizobium japonicum strain RCR3407 were grown either ina greenhouse with a low irradiance (200–400)µmolm–2 s–1) or in a controlled-environment growth cabinetwith a higher irradiance (600 µimol m–2 s–1).At 42 d plants were given a nitrogen-free nutrient solutioncontaining 50 mol m–3 sodium chloride for 2 weeks andthen allowed to recover from salt-stress for a further 2 weeks. Salt treatment reduced plant growth by at least half in bothgrowth regimes, however, the controlled environment-grown (CEG)plants were five times larger than the greenhouse-grown (GG)plants in terms of dry weight and number/weight of nodules perplant, regardless of treatment. The structure of nodules, from both growth regimes, harvestedat the end of the 2 week salt-stress was similar to unstressedcontrol nodules. However, nodules harvested 1 week later fromboth CEG and GG plants had structural changes including degradationof bacteria in vacuoles around host cell nuclei, particularlyin the outer cell layers of the infected tissue. In addition,meristematic activity was seen in the cortex of some nodulesfrom GG plants. Young cells here contained infection threadsand newly-released bacteria. Nodules harvested 2 weeks after removal of the salt-stress fromCEG plants showed an apparent recovery from the stress. However,there was a very marked increase in the amount of starch inthe cortex which was not seen in equivalent GG nodules. In contrast,nodules from GG plants contained many vacuolate infected cellsand, consequently, a lowered bacteroid population. Further,meristematic activity was seen in a zone concentric to the infectedzone, newly-formed cells contained many large infection threadsand were interspersed with intercellular bacteria. The meristematicactivity increased the relative volume of cortical to infectedcells in these nodules. Growth conditions did not affect control nodule specific nitrogenaseactivity or oxygen diffusion resistance (R) and these parameterswere also not altered in CEG nodules exposed to salt plus the14 d recovery period. However, nitrogenase activity was greatlyreduced, and R increased by more than eight times in equivalentGG nodules exposed to salt plus recovery. It is hypothesized that the gross morphological changes werean attempt to counter salt toxicity and/or oxygen damage underconditions of reduced photosynthate supply to the nodules dueto the poor light levels in the greenhouse. However, soybeannodules supplied with adequate photosynthate were able to withstandand recover from long-term salt-stress with little alterationto their structural integrity. Key words: Soybean, sodium chloride, nitrogen fixation, light intensity, oxygen diffusion resistance  相似文献   

14.
The effect of light on NO3 utilization was investigatedin non-nodulated soybean (Clycine max L. Merr., cv. Kingsoy)plants during a 14/10 h light/dark period at a constant temperatureof 26C. A 30–50% decrease of net NO3 uptake ratewas observed 2–6 h after the lights were turned off. Thiswas specifically due to an inhibition of NO3 influx asmeasured by 15N incorporation during 5 min. The absolute valuesof NO3 efflux depended on whether the labelling protocolinvolved manipulation of the plants or not, but were not affectedby illumination of the shoots. Darkness had an even more markedeffect in lowering the reduction of 15NO3 in both rootsand shoots, as well as xylem transport of 15NO3 and reduced15N. Concurrently with this slowing down of transport and metabolicprocesses, accumulations of NO3 and Asn were significantlystimulated in roots during the dark period. These data are discussedin view of the hypothesis that darkness adversely affects NO3uptake through specific feedback control, in response to alterationsin the later steps of N utilization which are more directlydependent on light. Key words: Glycine max, light/dark cycles, nitrate uptake, nitrate reduction  相似文献   

15.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

16.
The mechanism of SO2-induced changes in stomatal conductance(g) of alder was examined to determine if SO2 affects guardcell function directly or indirectly through the SO2-inducedchanges in photosynthesis. During experimental fumigations at SO2 concentrations of 3–3µmol m–3 (0.08 µl l–1), stomatal closurepreceded declines in net photosynthetic rate (A), indicatingthat SO2 can directly affect guard cells. From these and otherstudies it appears that the sequence of A and g responses maybe influenced by SO2 concentration as well as by species. Fumigation with SO2 did not cause increases in g, even whenthe intercellular substomatal CO2 concentration (ci) was reducedby 50 µmol mol–1. Increases in g are not attributableto SO2 effects on the CO2-based stomatal control system. Key words: Air pollution, Alnus serrulata, gas exchange, stomata, sulphur dioxide  相似文献   

17.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

18.
The developmental profile of ‘constitutive’ nitratereductase activity (cNRA) in leaves of soybean (Glycine max(L.) cv. Bragg) plants at different ages is described. The youngestleaves had most cNRA and the activity dropped off as a newerleaf developed above it. Each leaf had its distinct active periodof in vivo cNRA. This pattern was different in urea-grown andsymbiotically-grown plants (inoculated with Bradyrhizobium japonicumstrain USDA 110), where the latter had no detectable in vivocNRA in older leaves. Urea-grown plants maintained considerablein vivo NRA in such older leaves. When symbiotically-grown plantshad their nodules removed, in vivo cNRA reappeared in olderleaves within 1 d of removal, nearly reaching levels of youngleaves at 3 d after nodule excision. Allantoic acid (ALL), oneof the known transport ureides of soybeans, was implicated asa possible signal molecule from nodules to leaves. Allantoicacid (100 µM) inhibited in vitro c1 NRA significantly,with 400 µM ALL resulting in complete inhibition. In contrast,allantoin (ALN) had no inhibitive effect on NRA. Inhibitionof c1NRA by ALL was by a competitive process, judging from Lineweaver-Burkeplots against nitrate. Kinetics showed a constant Vmax of around105 nmol NO2 mg–1 protein h–1 and a Km for nitrateof 15 mM, which increased to 60 mM in the presence of 200 µMallantoic acid. Non-specific (ionic and pH-related) influenceswere eliminated. Allantoic acid also had a slight stimulatingeffect of in vitro NRA (up about 25% at 400 µM). Thesefindings suggest that c1NRA may be involved in ureide metabolism,rather than in vivo nitrate metabolism. Key words: Root-shoot interaction, nitrogen metabolism, nodulation, symbiosis  相似文献   

19.
MCNEIL  D. L. 《Annals of botany》1980,45(3):329-338
Collections of phloem sap made over a 40-day period from a varietyof locations on nodulated white lupin plants (Lupinus albusL. cv. ultra) showed considerable enrichment with K+ and Mg2+in the phloem streams destined for the shoot apices or fruitsrelative to the streams arising from the leaflets (up to 5.5times). Sodium showed enrichment in the streams destined forthe roots (up to 2.5 times) but only when present in the watersupply at a high level (3 mM). The stem, in view of its centrallocation in the transport pathway, is seen as an organ capableof redistributing minerals in the phloem independently of photosynthate. Lupinus albus L., lupin, phloem loading, magnesium, potassium, sodium, mineral elements  相似文献   

20.
We studied the responses of Xanthium occidentale (Bertol.) (cockleburor Noogoora burr), a noxious weed, to atmospheric CO2 enrichmentand nitrate-N concentrations in the root zone ranging from 0.5to 25 mM. CO2 enrichment (1500 cm3 m–3) increased dry-matterproduction to about the same extent (18 per cent) at all levelsof supplied N: most of the increment in dry matter was distributedequally between leaves and roots so that there was little effecton shoot-to-root dry-weight ratios. Growth was stimulated greatlyby N and plateaued at 12 mM supplied N. Shoot-to-root dry-weightand total N ratios increased with increasing N supply. CO2 enrichmenthad no effect on the total amount of N accumulated by plants,but increased the N-use efficiency of leaves. Enriched plantshad lower concentrations and quantities of N in their leavesthan controls, and therefore lower shoot-to-root total N ratios.Little free NO3 accumulated in organs of control or enrichedplants. NO3 was the major form of N in xylem sap fromdetopped plants at low supplied NO3-N, but amino N was equalin importance at high supplied NO3-N in control and enrichedplants. Concentrations of NO3 were lower in the xylemsap of CO2 enriched plants. It was concluded that the betterN-use efficiency of CO2 enriched plants could result in increasedgrowth of X. occidentale in regions of marginal soil fertilityas atmospheric levels of CO2 increase. CO2 enrichment, nitrogen, Xanthium, Noogoora burr, cocklebur  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号