首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of sheep kidney gamma-glutamyl transpeptidase was studied using a novel substrate L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate. When the substrate was incubated with the enzyme in the presence of an amino acid or peptide acceptor, the corresponding L-alpha-methyl-gamma-glutamyl derivatives of the acceptors were formed. In the absence of acceptor only hydrolysis occurred, and no transpeptidation products were detected. The presence of the methyl group on the alpha-carbon apparently prevents enzymatic transfer of the L-alpha-methyl-gamma-glutamyl residue to the amino group of the substrate itself (autotranspeptidation). When the enzyme was incubated with conventional substrates, such as glutathione or gamma-glutamyl-p-nitroanilide and an amino acid acceptor, hydrolysis, autotranspeptidation, and transpeptidation to the acceptor occurred concurrently. Initial velocity measurements in which the concentration of L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate was varied at several fixed acceptor concentrations, and either the release of alpha-aminobutyrate or the formation of the transpeptidation products was determined, yielded results which are consistent with a ping-pong mechanism modified by a hydrolytic shunt. A scheme of such a mechanism is presented. This mechanism predicts the formation of an alpha-methyl-gamma-glutamyl-enzyme intermediate, which can react with an amino acid to form the transpeptidation product; or in the absence of, or in the presence of low concentrations of amino acids, can react with water to form the hydrolytic products. Kinetic derivations for the reaction of the enzyme with the conventional substrate gamma-glutamyl-p-nitroanilide predict either linear or nonlinear double-reciprocal plots, depending on the prevalence of the hydrolytic, autotranspeptidation, or transpeptidation reactions. The results of kinetic experiments confirmed these predictions.  相似文献   

2.
《FEBS letters》2014,588(23):4325-4333
Covalent attachment of surface proteins to the cell wall of Gram-positive bacteria requires a sortase-mediated transpeptidation reaction. In almost all Gram-positive bacteria, the housekeeping sortase, sortase A, recognizes the canonical recognition sequence LPXTG (X = any amino acid). The human pathogen Clostridium difficile carries a single putative sortase gene (cd2718) but neither transpeptidation activity nor specificity of CD2718 has been investigated. We produced recombinant CD2718 and examined its transpeptidation activity in vitro using synthetic peptides and MALDI-ToF(-ToF) MS analysis. We demonstrate that CD2718 has sortase activity with specificity for a (S/P)PXTG motif and can accommodate diaminopimelic acid as a substrate for transpeptidation.  相似文献   

3.
The action of pig pepsin on a variety of small peptides including Leu-Trp-Met-Arg, Leu-Trp-Met, Leu-Leu-NH2, benzyloxycarbonyl-Phe-Leu and Gly-Leu-Tyr was studied. Leu-Leu-Leu was found to be the major product from the substrates Leu-Trp-Met-Arg and Leu-Trp-Met, indicating that the predominant reaction at pH 3.4 was a transpeptidation of the acyl-transfer type. Leu-Leu-Leu was also formed in high yield by amino transfer from benzyloxycarbonyl-Phe-Leu. Like the amino-transfer reactions the acyl transfer proceeded via a covalent intermediate, since [14C]leucine was not incorporated into transpeptidation products and did not exchange with enzyme-bound leucine in the presence of acceptors. With Leu-Trp-Met both acyl and amino transpeptidation products, namely Leu-Leu, Leu-Leu-Leu, Met-Met and Met-Met-Met, were formed in addition to methionine and leucine. With Leu-Trp-Met-Arg (1 mM) the pH optimum for the rates of hydrolysis and acyl transfer is about pH 3.4. At this pH the rate of acyl transfer exceeds that of hydrolysis; at pH 2, however, hydrolysis was faster than transfer. A comparison of the effect of the length of substrates and products on the reaction rates allows the conclusion that the binding site can extend over eight to nine amino acid residues. Although the experiments provide no conclusive evidence for or against the involvement of amino and/or acyl intermediates in the hydrolysis of long peptides and proteins, the high yield of transpeptidation reactions of both types observed with some substrates suggests a major role for the intermediates in pepsin-catalysed reactions. The results also show that when pig pepsin is used for the digestion of proteins for sequence work, the likelihood of the formation of transpeptidation products is considerable. In this way peptides not present in the original sequence could easily form in a reasonably good yield.  相似文献   

4.
Staphylococcus aureus sortase anchors surface proteins to the cell wall envelope by cleaving polypeptides at the LPXTG motif. Surface proteins are linked to the peptidoglycan by an amide bond between the C-terminal carboxyl and the amino group of the pentaglycine cross-bridge. We find that purified recombinant sortase hydrolyzed peptides bearing an LPXTG motif at the peptide bond between threonine and glycine. In the presence of NH(2)-Gly(3), sortase catalyzed exclusively a transpeptidation reaction, linking the carboxyl group of threonine to the amino group of NH(2)-Gly(3). In the presence of amino group donors the rate of sortase mediated cleavage at the LPXTG motif was increased. Hydrolysis and transpeptidation required the sulfhydryl of cysteine 184, suggesting that sortase catalyzed the transpeptidation reaction of surface protein anchoring via the formation of a thioester acyl-enzyme intermediate.  相似文献   

5.
Penicillopepsin catalyses transpeptidation reactions involving the transfer of the N-terminal amino acids of suitable substrates via covalent acyl intermediates to acceptor peptides, usually the substrate. The major products obtained when Phe-Tyr-Thr-Pro-Lys-Ala and Met-Leu-Gly were used as substrates were Phe-Phe and Met-Met respectively. With Met-Leu-Gly the tetrapeptide Met-Met-Leu-Gly was observed as probable intermediate. Co-incubation of Leu-Tyr-Leu and Phe-Tyr-Thr-Pro-Lys-Ala led to the formation of Leu-Phe and Phe-Leu as well as Leu-Leu and Phe-Phe. No reaction was observed with tripeptides in which the first or second amino acid is glycine. It appears that two amino aicds with large hydrophobic residues are needed for the transpeptidation reaction. Nucleophilic compounds other than peptides, such as hydroxylamine, aliphatic alcohols and dinitrophenylhydrazine, were not acceptors for the acyl group. Leucine, phenylalanine and leucine methyl ester also had no effect on the reaction. The transpeptidation reaction proceeded readily at pH 3.6 and 4.7. At pH 6.0 the reaction was slow and at pH 1.9 little or no transpeptidation was observed. Porcine pepsin catalyses similar transpeptidation reactions. Sequence studies show that porcine pepsin and penicillopepsin are homologous. The present study also suggests that they have a very similar mechanism. Evidence available at this time indicates that the mechanism of these enzymes is complex and may be modulated by secondary substrate-enzyme interactions. A hypothesis is presented which proposes that pepsin-catalysed reactions proceed via different covalent intermediates (amino-intermediates or acylintermediates) depending on the nature of the substrate. The possibility that some reactions do not involve covalent intermediates is also discussed.  相似文献   

6.
The composition and structural aspects of the amino and carboxylic acid groups required for incorporation into peptides by transpeptidation and inhibition of hydrolysis in carboxypeptidase Y-catalyzed reactions were studied. Separation of these two groups by even one carbon prevents incorporation by transpeptidation and does not inhibit incorporation of other amino acids into model peptides. Substitution of phosphonic or sulfonic acids for the carboxylic acid group also results in loss of incorporation by transpeptidation. Only the sulfonic acid analog of glycine causes inhibition of hydrolysis and this inhibition is lost when serine is included in the reaction. d-Serine is not incorporated by carboxypeptidase Y, and its presence in the reaction mixture does not inhibit the incorporation of the L-isomer.  相似文献   

7.
Ribosome serves as a universal molecular machine capable of synthesis of all the proteins in a cell. Small-molecule inhibitors, such as ribosome-targeting antibiotics, can compromise the catalytic versatility of the ribosome in a context-dependent fashion, preventing transpeptidation only between particular combinations of substrates. Classic peptidyl transferase center inhibitor chloramphenicol (CHL) fails to inhibit transpeptidation reaction when the incoming A site acceptor substrate is glycine, and the molecular basis for this phenomenon is unknown. Here, we present a set of high-resolution X-ray crystal structures that explain why CHL is unable to inhibit peptide bond formation between the incoming glycyl-tRNA and a nascent peptide that otherwise is conducive to the drug action. Our structures reveal that fully accommodated glycine residue can co-exist in the A site with the ribosome-bound CHL. Moreover, binding of CHL to a ribosome complex carrying glycyl-tRNA does not affect the positions of the reacting substrates, leaving the peptide bond formation reaction unperturbed. These data exemplify how small-molecule inhibitors can reshape the A-site amino acid binding pocket rendering it permissive only for specific amino acid residues and rejective for the other substrates extending our detailed understanding of the modes of action of ribosomal antibiotics.  相似文献   

8.
gamma-Glutamyl transpeptidase (purified from rat kidney) was incubated with glutathione and a mixture of amino acids that closely approximates the amino acid composition of blood plasma, and the relative extents of transpeptidation and hydrolysis were determined by quantitative measurement of the products formed (glutamate, cysteinylglycine, gamma-glutamyl amino acids). At pH 7.4, in the presence of 50 microM glutathione and the amino acid mixture, about 50% of the glutathione that was utilized participated in transpeptidation. Studies in which the formation of individual gamma-glutamyl amino acids was determined in the presence of glutathione and the amino acid mixture showed that L-cystine and L-glutamine are the most active amino acid acceptors, and that other neutral amino acids also participate in transpeptidation to a significant extent. These in vitro experiments are consistent with a number of other findings which indicate that transpeptidation is a significant physiological function of gamma-glutamyl transpeptidase.  相似文献   

9.
gamma-Glutamyltranspeptidase was purified ca. 15,200-fold from cell-free extracts of Proteus mirabilis to electrophoretic homogeneity and then crystallized. The enzyme has an estimated molecular weight of 80,000 and consists of two different subunits with molecular weights of ca. 47,000 and 28,000. The purified enzyme catalyzed hydrolysis and transpeptidation of various gamma-glutamyl compounds, including the oxidized and reduced forms of glutathione, gamma-glutamyl compounds of L-phenylalanine, L-tyrosine, L-histidine, L-alpha-aminobutyrate, L-leucine, and p-nitroaniline. Glycylglycine, L-phenylalanine, L-methionine, L-histidine, L-tryptophan, and L-isoleucine were good acceptors of the gamma-glutamyl moiety in the transpeptidation reaction. Km values for gamma-glutamyl compounds were on the order of 10(-4) to 10(-5) M, and those for acceptor peptides and amino acids were on the order of 10(-2) to 10(-3) M. The enzyme was inhibited by L-serine plus borate and 6-diazo-5-oxo-L-norleucine, which are inhibitors of gamma-glutamyltranspeptidases isolated from mammals. Various amino acids alone were found to inhibit the transpeptidation competitively with a gamma-glutamyl donor. Kinetic analysis suggested that the reaction sequence of substrate binding and product release proceeds according to a ping pong bi bi mechanism.  相似文献   

10.
The role of alpha-chymotrypsin in the plastein reaction was studied using a peptic hydrolysate of albumin as substrate. Study of this reaction simultaneously by different methods showed that the plastein reaction is enzyme catalyzed and is highly dependent on environmental conditions. A gel permeation chromatography study of the plastein reaction showed simultaneous increases in the high- and low-molecular-weight oligopeptide fractions; a transpeptidation mechanism may be involved in the reaction. A study of the effect of substrate concentration on the plastein reaction catalyzed by alpha-chymotrypsin showed a profile with both hydrolytic and synthetic activities. This effect was also observed when the reaction course was followed by quantification of the free amino groups at different substrate concentrations, showing that a condensation mechanism is responsible for the synthetic activity when the substrate concentration is very high. These results have led us to conclude that the plastein reaction involves a transpeptidation and/or condensation mechanism, which is a function of the substrate concentration.  相似文献   

11.
1. The inhibition of pepsin-catalysed hydrolysis of N-acetyl-l-phenylalanyl-l-phenylalanylglycine by products and product analogues was studied. 2. The non-competitive nature of the inhibition by the product N-acetyl-l-phenylalanine confirms an ordered release of products, and points to a common mechanism (involving an amino-enzyme) for pepsin-catalysed transpeptidation and hydrolysis reactions. 3. N-Acetyl-l-phenylalanine ethyl ester is also a non-competitive inhibitor, but here the inhibition is of the ;dead-end' type. No ethanol is detectable in reaction mixtures, indicating that this ester cannot act as an amino group acceptor in a transpeptidation process. 4. The same is true for N-methanesulphonyl-l-phenylalanine methyl and methyl thiol esters. No methanethiol is liberated when the methyl thiol ester is present as an inhibitor of the hydrolytic reaction, and the hope that such a thiol ester would effectively trap the amino-enzyme was not fulfilled.  相似文献   

12.
The applicability of serine carboxypeptidase catalysed transpeptidation reactions, using amino acid amides as nucleophiles, for C-terminal amidation of peptides has been investigated. With the aim of converting an unamidated precursor into GRF(1-29)-NH2, an interesting biologically active derivative of growth hormone releasing factor, a number of model reactions were initially investigated. In such a transpeptidation reaction, where the C-terminal amino acid is replaced by the amino acid amide, used as nucleophile, the C-terminal amino acid residue of the substrate can be chosen freely since it functions as leaving group and does not constitute part of the product. Since the C-terminal sequence of GRF(1-29)-NH2 is -Met-Ser-Arg-NH2 the model reactions Bz-Met-Ser-X-OH (X = Ala, Leu, Arg) + H-Arg-NH2----Bz-Met-Ser-Arg-NH2 + H-X-OH were first studied. With carboxypeptidase Y and X = Ala or Leu the amidated product could be obtained of 98% and 41%, respectively. With carboxypeptidase W-II and X = Arg a yield of no more than 72% could be obtained. The choice of Ala as leaving group in combination with carboxypeptidase Y therefore appeared optimal. With the longer peptide Bz-Leu-Gln-Asp-Ile-Met-Ser-Ala-OH the amidated product could be obtained in a yield of 78%, using carboxypeptidase Y, the only other product being Bz-Leu-Gln-Asp-Ile-Met-Ser-OH, formed due to the competing hydrolysis reaction. The full length peptide GRF(1-28)-Ala-OH was synthesized by the continuous flow polyamide solid-phase method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Adediran SA  Kumar I  Pratt RF 《Biochemistry》2006,45(43):13074-13082
Beta-lactam antibiotics restrict bacterial growth by inhibiting DD-peptidases. These enzymes catalyze the final transpeptidation step in bacterial cell wall biosynthesis. Although much structural information is now available for these enzymes, the mechanism of the actual transpeptidation reaction has not been studied in detail. The reaction is known to involve a double-displacement mechanism with an acyl-enzyme intermediate, which can be attacked by water, specific amino acids, peptides, and other acyl acceptors. We describe in this paper an investigation of acyl acceptor specificity and assess the need for general base catalysis in the deacylation transition state of the Streptomyces R61 DD-peptidase. We show, by the criterion of solvent deuterium kinetic isotope effect measurements and proton inventories, that the transition states of specific and nonspecific substrates are very similar, at least with respect to proton motion. The transition states for attack (tetrahedral intermediate formation) by d-amino acids and Gly-l-Xaa dipeptides do not include a general base catalyst, while such catalysis is essential for reaction with water and d-alpha-hydroxy acids. D-Alpha-hydroxy acids act as acyl acceptors for glycyl substrates but not for more specific d-alanyl substrates; hydroxy acids actually behave, more generally, as mixed inhibitors of the DD-peptidase. The structural and mechanistic bases of these observations are discussed; they should inform transition state analogue design.  相似文献   

14.
目的:酵母表达体系制备重组人胰岛素的工艺中,转肽反应属于酶促半合成反应,过程复杂,成本高昂,通过实验研究提高反应效率,降低反应成本。方法:通过优化转肽反应中胰蛋白酶和双保护苏氨酸(Thr(But)OBut)的比例,寻找有利的反应条件,为进一步的条件确定奠定基础;从提高转肽反应物的反应效率出发,调整工艺顺序,将一步转肽反应调整为两步转肽反应;以胰蛋白酶和双保护苏氨酸两种反应物,进行综合成本分析比较;同时采用药典方法测定两种不同工艺制备的重组人胰岛素,进行生物活性的比较分析。结果:通过实验研究,一步转肽反应的收率最高可以达到74%,而两步转肽收率的收率最高可以达到90%;两步转肽反应相比一步转肽反应,酶量减少70%,双保护苏氨酸的使用量降低62.5%,同时提高了转肽反应中胰岛素原的反应浓度,达到12.5 mM,有着进一步开发的潜质;生物活性测定两种工艺生产的重组人胰岛素均符合中国药典的要求。结论:两步转肽反应对比一步转肽反应,提高了反应效率,产物的纯度较高,降低了反应的成本,有利于提高国产胰岛素的市场竞争力。  相似文献   

15.
gamma-Glutamyltranspeptidase (GGT) (EC 2.3.2.2) was purified from the periplasmic fraction of Escherichia coli K-12 to electrophoretic homogeneity. The final purification step, chromatofocusing, gave two protein peaks showing GGT activity (fractions A and B). The major heavy fraction (fraction A) consisted of two different subunits, with molecular weights of 39,200 and 22,000. The minor light fraction (fraction B) consisted of those with molecular weights of 38,600 and 22,000. Fraction A catalyzes the hydrolysis and transpeptidation of all gamma-glutamyl compounds tested, but it prefers basic amino acids and aromatic amino acids as acceptors. The apparent Km values for glutathione and gamma-glutamyl-p-nitroanilide as gamma-glutamyl donors in the transpeptidation reaction were both 35 microM, and those for glycylglycine and L-arginine as acceptors were 0.59 and 0.21 M, respectively. The enzyme was inhibited by some amino acids and by protease inhibitors and affinity-labeling reagents for GGT. The temperature stability of the purified GGT supports our hypothesis that E. coli GGT is synthesized only at lower temperature rather than that the synthesized GGT is degraded or inactivated at higher temperature.  相似文献   

16.
17.
The course and mechanism of reaction of ninhydrin with amines has both bioanalytical and bioorganic significance since the reaction is widely used for analysis of amino groups and serves as a model for several biochemical reactions that occur in metabolism of phosphonic acid derivatives, deamination, transamination, and transpeptidation. In many cases, e.g., with lysine, cysteine, proteins, the yield of the ninhydrin product, Ruhemann's purple, does not correspond exactly to the expected 1 equiv. per amino group. Possible reasons for this apparent nonideal stoichiometry include slow formation, side reactions, hydrolytic, oxidative, and photolytic instability, and interfering color. The origin and contributions of each of these factors are examined.  相似文献   

18.
Under alkaline conditions, the membrane-bound DD-carboxypeptidase of Streptococcus faecalis ATCC 9790 catalyses exchange reactions in which the X-L-R3-D-Ala moiety of peptides of the type X-L-R3-D-Ala-D-Ala is transferred to simple amino compounds such as D-alanine, glycine and glycyl-glycine. The enzyme system is unable, however, to catalyse complex reactions that would simulate the natural transpeptidation reaction.  相似文献   

19.
Past anthrax attacks in the United States have highlighted the need for improved measures against bioweapons. The virulence of anthrax stems from the shielding properties of the Bacillus anthracis poly-γ-d-glutamic acid capsule. In the presence of excess CapD, a B. anthracis γ-glutamyl transpeptidase, the protective capsule is degraded, and the immune system can successfully combat infection. Although CapD shows promise as a next generation protein therapeutic against anthrax, improvements in production, stability, and therapeutic formulation are needed. In this study, we addressed several of these problems through computational protein engineering techniques. We show that circular permutation of CapD improved production properties and dramatically increased kinetic thermostability. At 45 °C, CapD was completely inactive after 5 min, but circularly permuted CapD remained almost entirely active after 30 min. In addition, we identify an amino acid substitution that dramatically decreased transpeptidation activity but not hydrolysis. Subsequently, we show that this mutant had a diminished capsule degradation activity, suggesting that CapD catalyzes capsule degradation through a transpeptidation reaction with endogenous amino acids and peptides in serum rather than hydrolysis.  相似文献   

20.
The main enzymatic reaction of the large ribosomal subunit is peptide bond formation. Ribosome crystallography showed that A2451 of 23S rRNA makes the closest approach to the attacking amino group of aminoacyl-tRNA. Mutations of A2451 had relatively small effects on transpeptidation and failed to unequivocally identify the crucial functional group(s). Here, we employed an in vitro reconstitution system for chemical engineering the peptidyl transferase center by introducing non-natural nucleosides at position A2451. This allowed us to investigate the peptidyl transfer reaction performed by a ribosome that contained a modified nucleoside at the active site. The main finding is that ribosomes carrying a 2′-deoxyribose at A2451 showed a compromised peptidyl transferase activity. In variance, adenine base modifications and even the removal of the entire nucleobase at A2451 had only little impact on peptide bond formation, as long as the 2′-hydroxyl was present. This implicates a functional or structural role of the 2′-hydroxyl group at A2451 for transpeptidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号