首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleurotolysin, a sphingomyelin-specific cytolysin consisting of A (17 kDa) and B (59 kDa) components from the basidiomycete Pleurotus ostreatus, assembles into a transmembrane pore complex. Here, we cloned complementary and genomic DNAs encoding pleurotolysin, and studied pore-forming properties of recombinant proteins. The genomic regions encoding pleurotolysin A and B contained two and eight introns, respectively, and putative promoter sequences. The complementary DNA (cDNA) for pleurotolysin A encoded 138 amino acid residues, and the predicted product was identical with natural pleurotolysin A, except for the presence of the first methionine. Recombinant pleurotolysin A lacking the first methionine was purified as a 17-kDa protein with sphingomyelin-binding activity. The cDNA for pleurotolysin B encoded a precursor consisting of 523 amino acid residues, of which N-terminal 48 amino acid residues were absent in natural pleurotolysin B. Mature and precursor forms of pleurotolysin B were expressed as insoluble 59- and 63-kDa proteins, respectively, which were unfolded with 8 M urea and refolded by 100-fold dilution with 10 mM Tris-HCl buffer, pH 8.5. Although neither recombinant pleurotolysin A nor B alone was hemolytically active at higher concentrations of up to 100 mg/ml, they cooperatively assembled into a membrane pore complex on human erythrocytes and lysed the cell as efficiently as the natural proteins at nanomolar concentrations. In contrast, the precursor of pleurotolysin B was much less hemolytically active than mature pleurotolysin B in the presence of pleurotolysin A.  相似文献   

2.
Proteins from the oyster mushroom, 15 kDa ostreolysin A (OlyA), and 59 kDa pleurotolysin B (PlyB) with a membrane attack complex/perforin (MACPF) domain, damage cell membranes as a binary cytolytic pore-forming complex. Measurements of single-channel conductance and transmembrane macroscopic current reveal that OlyA/PlyB form non-selective ion-conducting pores with broad, skewed conductance distributions in N18 neuroblastoma and CHO-K1 cell membranes. Polyethylene-glycol 8000 (hydrodynamic radius of 3.78 nm) provides almost complete osmotic protection against haemolysis, which strongly suggests a colloid-osmotic type of erythrocyte lysis. Our data indicate that OlyA/PlyB form transmembrane pores of varied sizes, as other pore-forming proteins with a MACPF domain.  相似文献   

3.
The mushroom Pleurotus ostreatus has been reported to produce the hemolytic proteins ostreolysin (OlyA), pleurotolysin A (PlyA) and pleurotolysin B (PlyB). The present study of the native and recombinant proteins dissects out their lipid-binding characteristics and their roles in lipid binding and membrane permeabilization. Using lipid-binding studies, permeabilization of erythrocytes, large unilamellar vesicles of various lipid compositions, and electron microscopy, we show that OlyA, a PlyA homolog, preferentially binds to membranes rich in sterol and sphingomyelin, but it does not permeabilize them. The N-terminally truncated Δ48PlyB corresponds to the mature and active form of native PlyB, and it has a membrane attack complex-perforin (MACPF) domain. Δ48PlyB spontaneously oligomerizes in solution, and binds weakly to various lipid membranes but is not able to perforate them. However, binding of Δ48PlyB to the cholesterol and sphingomyelin membranes, and consequently, their permeabilization is dramatically promoted in the presence of OlyA. On these membranes, Δ48PlyB and OlyA form predominantly 13-meric oligomers. These are rosette-like structures with a thickness of ∼9 nm from the membrane surface, with 19.7 nm and 4.9 nm outer and inner diameters, respectively. When present on opposing vesicle membranes, these oligomers can dimerize and thus promote aggregation of vesicles. Based on the structural and functional characteristics of Δ48PlyB, we suggest that it shares some features with MACPF/cholesterol-dependent cytolysin (CDC) proteins. OlyA is obligatory for the Δ48PlyB permeabilization of membranes rich in cholesterol and sphingomyelin.  相似文献   

4.
Staphylococcal leukocidin consists of two separate proteins, LukS and LukF, which cooperatively lyse human and rabbit polymorphonuclear leukocytes and rabbit erythrocytes. Here we studied the pore-forming properties of leukocidin and the molecular architecture of the leukocidin pore. (1) Leukocidin caused an efflux of potassium ions from rabbit erythrocytes and swelling of the cells before hemolysis. However, ultimate lysis of the toxin-treated swollen erythrocytes did not occur when polyethylene glycols with hydrodynamic diameters of > or = 2.1 nm were present in the extracellular space. (2) Electron microscopy showed the presence of a ring-shaped structure with outer and inner diameters of 9 and 3 nm, respectively, on leukocidin-treated human polymorphonuclear leukocytes and rabbit erythrocytes. (3) Ring-shaped structures of the same dimensions were isolated from the target cells, and they contained LukS and LukF in a molar ratio of 1:1. (4) A single ring-shaped toxin complex had a molecular size of 205 kDa. These results indicated that LukS and LukF assemble into a ring-shaped oligomer of approximately 200 kDa on the target cells, forming a membrane pore with a functional diameter of approximately 2 nm.  相似文献   

5.
A pore-forming protein was detected and purified for the first time from a marine sponge (Tethya lyncurium). The purified protein has a polypeptide molecular mass of 21 kDa and a pI of 6.4. Tethya pore-forming protein (also called Tethya hemolysin) rapidly lysed erythrocytes from a variety of organisms. After binding to target membranes, the hemolysin resisted elution with EDTA, salt or solutions of low ionic strength and hence resembled an integral membrane protein. Erythrocytes could be protected from hemolysis induced by Tethya hemolysin by addition of 30 mM dextran 4 (4-6 kDa; equivalent hydrodynamic diffusion radius, 1.75-2.3 nm) to the extracellular medium, but not by addition of uncharged molecules of smaller size [sucrose, raffinose and poly(ethylene glycol) 1550; equivalent hydrodynamic diffusion radii, 0.46, 0.57 and 1.2 nm, respectively]. This result indicates that hemolysin is able to form stable transmembrane pores with an effective diameter of about 2-3 nm. Treatment of osmotically protected erythrocytes with Tethya hemolysin caused a rapid efflux of intracellular K+ and ATP, and a rapid influx of extracellularly added Ca2+ and sucrose. In negative-staining electron microscopy, target erythrocyte membranes exposed to purified Tethya hemolysin displayed ultrastructural lesions but without visible pores.  相似文献   

6.
Staphylococcal gamma-hemolysin (Hlg), leukocidin (Luk), and Panton-Valentine leukocidin (PVL) are two-component and hetero-oligomeric pore-forming cytolytic toxins (or cytolysin), that were first identified in bacteria. No information on the existence of hetero-oligomeric pore-forming cytolytic toxins in bacteria except for staphylococcal strains is available so far. Hlg (Hlg1 of 34 kDa/Hlg2 of 32 kDa) effectively lyses erythrocytes from human and other mammalian species. Luk (LukF of 34 kDa/LukS of 33 kDa) is cytolytic toward human and rabbit polymorphonuclear leukocytes and rabbit erythrocytes, and PVL (LukF-PV of 34 kDa/LukS-PV of 33 kDa) reveals cytolytic activity with a high cell specificity to leukocytes. Hlg1 is identical to LukF and that the cell specificities of the cytolysins are determined by Hlg2 and LukS. Based on the primary and 3-dimensional structures of the toxin components, Hlg, Luk, and PVL are thought to form a family of proteins. In the first chapter of this article, we describe the molecular basis of the membrane pore-forming nature of Hlg, Luk, and PVL. We also describe a requirement of the phosphorylation of LukS and LukS-PV by protein kinase for their leukocytolytic activity besides their pore formation on human leukocytes.Recently, the assembly mechanism of the LukF and Hlg2 monomers into pore-forming hetero-oligomers of Hlg on human erythrocyte membranes has been clarified for the first time by our study using a single-molecular fluorescence imaging technique. We estimated 11 sequential equilibrium constants for the assembly pathway which includes the beginning with membrane binding of monomers, proceeds through single pore oligomerization, and culminates in the formation of clusters of the pores. In the second chapter of this article, we refer to an assembly mechanism of LukF and Hlg2 on human erythrocytes as well as the roles of the membranes of the target cells in pore formation by Hlg.The LukF, LukS, and Hlg2 proteins are derived from the Hlg locus (hlg), and have been found in 99% of clinical isolates of Staphylococcus aureus. In contrast, LukF-PV and LukS-PV are derived from the PVL locus (pvl) which is distinct from the hlg locus, and only a small percentage of clinically isolated S. aureus strains carries pvl. Recently, we discovered pvl on the genome of lysogenic bacteriophages, psiPVL, and determined the entire gene of the phage. We also demonstrated the phage conversion of S. aureus leading to the production of PVL through the discovery of a PVL-carrying temperate phage, psiSLT, from a clinical isolate of S. aureus. In the third chapter of this article, we discuss genetic analyses of the Hlg, Luk, and PVL genes. We also discuss the current status of knowledge of the genetic organization of PVL-converting phages in order to achieve an understanding of their molecular evolution.  相似文献   

7.
Binding of a radiolabeled sea anemone cytolysin to erythrocyte membranes   总被引:1,自引:0,他引:1  
Stichodactyla helianthus cytolysin III, a 17 kDa basic polypeptide isolated from a Caribbean sea anemone, is one of the most potent hemolysins yet found in a living organism. This toxin has been reported to form new ion channels in artificial lipid bilayer membranes. The ability of this toxin to attack cell membranes is greatly enhanced by the presence of sphingomyelin. In order to investigate the mechanism by which the cytolysin causes cell lysis, we have prepared a highly active [3H]cytolysin derivative by reductive methylation with sodium cyanoborohydride and [3H]formaldehyde. A dimethylated toxin derivative was used to investigate the basis for the differential lytic activity of this polypeptide upon erythrocytes from six mammalian species. Using both direct [3H]toxin binding and indirect (Thron method) binding techniques, we found that the interspecies differences are due to variable membrane susceptibilities toward the bound toxin, rather than to differences in membrane affinity for the toxin. Similarly, we showed the enhanced lytic activity of the toxin for rat erythrocytes at elevated pH to be caused by enhanced activity of the bound toxin.  相似文献   

8.
The polyene antibiotic amphotericin B (AmB) is known to form aqueous pores in lipid membranes and biological membranes. Here, membrane potential and ion permeability measurements were used to demonstrate that AmB can form two types of selective ion channels in human erythrocytes, differing in their interaction with cholesterol. We show that AmB induced a cation efflux (negative membrane polarization) across cholesterol-containing liposomes and erythrocytes at low concentrations (≤1.0 × 10−6 M), but a sharp reversal of such polarization was observed at concentrations greater than 1.0 × 10−6 M AmB, an indication that aqueous pores are formed. Cation-selective AmB channels are also formed across sterol-free liposomes, but aqueous pores are only formed at AmB concentrations 10 times greater. The effect of temperature on the AmB-mediated K+ efflux across erythrocytes revealed that the energies of activation for channel formation are negative and positive at AmB concentrations that lead predominantly to the formation of cation-selective channels and aqueous pores, respectively. These findings support the conclusion that the two types of AmB channels formed in human erythrocytes differ in their interactions with cholesterol and other membrane components. In effect, a membrane lipid reorganization, as induced by incubation of erythrocytes with tetrathionate, a cross-linking agent of the lipid raft–associated protein spectrin, led to differential changes in the activation parameters for the formation of both types of channels, reflecting the different lipid environments in which such structures are formed.  相似文献   

9.
During Plasmodium falciparum merozoite invasion into human and mouse erythrocytes, a 110-kDa rhoptry protein is secreted from the organelle into the erythrocyte membrane. In the present study our interest was to examine the interaction of rhoptry proteins of P. falciparum with the erythrocyte membrane. It was observed that the complex of rhoptry proteins of 140/130/110 kDa bind directly to a trypsin sensitive site on intact mouse erythrocytes, and not human, saimiri, or other erythrocytes. However, when erythrocytes were disrupted by hypotonic lysis, rhoptry proteins of 140/130/110 kDa were found to bind to membranes and inside-out vesicles prepared from human, mouse, saimiri, rhesus, rat, and rabbit erythrocytes. A binding site on the cytoplasmic face of the erythrocyte membrane suggests that the rhoptry proteins may be translocated across the lipid bilayer during merozoite invasion. Furthermore, pretreatment of human erythrocytes with a specific peptide derived from MSA-1, the major P. falciparum merozoite surface antigen of MW 190,000-200,000, induced binding of the 140/130/110-kDa complex. The rhoptry proteins bound equally to normal human erythrocytes and erythrocytes treated with neuraminidase, trypsin, and chymotrypsin indicating the binding site was independent of glycophorin and other major surface proteins. The rhoptry protein complex also bound specifically to liposomes prepared from different types of phospholipids. Liposomes containing PE effectively block binding of the rhoptry proteins to mouse cells, suggesting that there are two binding sites on the mouse membrane for the 140/130/110-kDa complex, one protein and a second, possibly lipid in nature. The results of this study suggest that the 140/130/110 kDa protein complex may interact directly with sites in the lipid bilayer of the erythrocyte membrane.  相似文献   

10.
Psacotheasin is a 34-mer knottin-type peptide that is derived from Psacothea hilaris larvae. In this study, the antifungal activity and mechanism(s) by which psacotheasin affects human fungal pathogens were investigated. Psacotheasin shows remarkable antifungal properties without hemolytic activity against human erythrocytes. To understand the antifungal mechanism(s) of psacotheasin in Candida albicans, flow cytometric analysis with DiBAC4(3) and PI was conducted. The results showed that psacotheasin depolarized and perturbed the plasma membrane of the C. albicans. Three-dimensional (3D)-flow cytometric contour-plot analysis, accompanied by decreased forward scatter (FS), which indicates cell size, confirmed that psacotheasin exerted antifungal effects via membrane permeabilization. The membrane studies, using a single GUV and FITC-dextran (FD) loaded liposomes, indicate that psacotheasin acts as a pore-forming peptide in the model membrane of C. albicans and the radius of pores were presumed to be anywhere from 2.3 to 3.3 nm. Therefore, the current study suggests that the mechanism(s) of psacotheasin’s antifungal properties function within the membrane.  相似文献   

11.
Hemolytic strains of Vibrio cholerae secrete a cytolysin that, upon binding as a monomer, forms pentameric pores in animal cell membranes. Pore formation is inhibited at low temperature and in the absence of cholesterol. We here posed the following questions: firstly, can oligomerization be observed in the absence of pore formation? Secondly, is membrane fluidity responsible for the effect of temperature or of cholesterol upon pore formation? The first issue was approached by chemical cross-linking, by electrophoretic heteromer analysis, and by electron microscopy. None of these methods yielded any evidence of a non-lytic pre-pore oligomer. The second question was addressed by the use of two susceptible liposome models, consisting of cholesterol admixed to bovine brain lipids and to asolectin, respectively. The two liposome species clearly differed in membrane fluidity as judged by diphenylhexatriene fluorescence polarization. Nevertheless, their permeabilization by the cytolysin decreased with temperature in a closely parallel fashion, virtually vanishing at 5 degrees C. Omission of cholesterol from the liposomes uniformly led to an increase in membrane fluidity but prevented permeabilization by the cytolysin. The effects of temperature and of cholesterol upon cytolysin activity are thus not mediated by fluidization of the target membrane. The findings of our study distinguish V. cholerae cytolysin from several previously characterized pore-forming toxins.  相似文献   

12.
High susceptibility of rabbit erythrocytes toward the pore-forming action of staphylococcal alpha-toxin correlates with the presence of saturable, high affinity binding sites. All efforts to identify a protein or glycolipid receptor have failed, and the fact that liposomes composed solely of phosphatidylcholine are efficiently permeabilized adds to the enigma. A novel concept is advanced here to explain the puzzle. We propose that low affinity binding moieties can assume the role of high affinity binding sites due to their spatial arrangement in the membrane. Evidence is presented that phosphocholine head groups of sphingomyelin, clustered in sphingomyelin-cholesterol microdomains, serve this function for alpha-toxin. Clustering is required so that oligomerization, which is prerequisite for stable attachment of the toxin to the membrane, can efficiently occur. Outside these clusters, binding to phosphocholine is too transient for toxin monomers to find each other. The principle of membrane targeting in the absence of any genuine, high affinity receptor may also underlie the assembly of other lipid-inserted oligomers including cytotoxic peptides, protein toxins, and immune effector molecules.  相似文献   

13.
The cytolytic protein Eiseniapore (38 kDa) from coelomic fluid of the earthworm Eisenia fetida functionally requires sphingomyelin as revealed by using mammalian erythrocytes and phospholipid vesicles. The effects of ions, glycoproteins and phospholipids were investigated for the two-step Eiseniapore action mode, binding and pore formation in different assays. Eiseniapore lysis is activated by thiol groups but inhibited by metal ions. Eiseniapore binding to target membranes is inhibited by Eiseniapore-regulating factor, vitronectin, heparin and lysophosphatidylcholine. Ca2+ and Mg2+ were found to be not necessary for membrane binding or lytic activity. Sphingomyelin was essential for Eiseniapore-induced leakage of liposomes. We describe a cytolytic protein/toxin in Eiseniapore which differs from the established classification; it can be activated by thiol groups and is inhibited by sphingomyelin. Electron microscopy of erythrocyte membranes confirmed ring-shaped structures (pores) with a central channel with outer (10 nm) and inner (3 nm) diameters as shown previously [Lange, S., Nüssler, F., Kauschke, E., Lutsch, G., Cooper, E.L. & Herrmann, A. (1997) J. Biol. Chem. 272, 20 884-20 892] using artificial membranes. Functional evidence of pore formation by Eiseniapore was revealed as protection of lysis by carbohydrates occurred at an effective diameter above 3 nm. From these results, we suggest a plausible explanation for the mechanism by which components of the earthworm's immune system destroy non-self components.  相似文献   

14.
Abstract Four outer membrane proteins were purified to homogeneity from isolated outer membranes of Bacteroides fragilis ; three ( M r 51000, 92000 and 125 000) had pore-forming activity in reconstituted liposomes as determined by swelling assay. Membrane vesicles containing the M rmr 55 000 outer membrane protein showed no detectable pore-forming activity. The three B. fragilis porins formed pores that allowed the penetration of uncharged saccharides of M r lower than 340–400, even though the efficiency of solute diffusion showed slight differences. The diffusion rates of glucose through the porins appeared to be lower than those through Escherichia coli porins.  相似文献   

15.
Tomita N  Abe K  Kamio Y  Ohta M 《FEBS letters》2011,585(21):3452-3456
Staphylococcal γ-hemolysin (Hlg) is a pore-forming toxin consisting of two separate components, LukF (34kDa) and Hlg2 (32kDa). Here we show that Hlg pores aggregate and form clusters on human erythrocyte membranes in association with increasing hemolytic activity. Quantitative analysis using transmission electron microscopy and image processing revealed that the formation of single pores and clusters is related to the release of potassium ions and of hemoglobin from erythrocytes, respectively. This is the first study to suggest a novel and unique property which can facilitate hemolysis by the cluster formation of Hlg pores.  相似文献   

16.
Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2). All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis.  相似文献   

17.
Hookworms feed on blood, but the mechanism by which they lyse ingested erythrocytes is unknown. Here we show that Ancylostoma caninum, the common dog hookworm, expresses a detergent soluble, haemolytic factor. Activity was identified in both adult and larval stages, was heat-stable and unaffected by the addition of protease inhibitors, metal ions, chelators and reducing agents. Trypsin ablated lysis indicating that the haemolysin is a protein. A closely migrating doublet of hookworm proteins with apparent molecular weights of 60-65 kDa bound to the erythrocyte membrane after lysis of cells using both unlabeled and biotinylated detergent-solubilised hookworm extracts. In addition, separation of detergent-soluble parasite extracts using strong cation-exchange chromatography, resulted in purification of 60-65 kDa proteins with trypsin-sensitive haemolytic activity. Erythrocytes lysed with particulate, buffer-insoluble worm extracts were observed using scanning electron microscopy and appeared as red cell ghosts with approximately 100 nm diameter pores formed in the cell membranes. Red blood cell ghosts remained visible indicating that lysis was likely caused by pore formation and followed by osmotic disruption of the cell.  相似文献   

18.
Vibrio cholerae EL Tor cytolysin, a water-soluble protein with a molecular mass of 63 kDa, forms small pores in target cell membranes. In this communication, planar lipid bilayers under voltage clamp conditions were used to investigate the geometric properties of the pores. It was established that all cytolysin channels were inserted into membranes with the same orientation. Sharp asymmetry in the I-V curve of fully open cytolysin channels persisting at high electrolyte concentrations indicated asymmetry in the geometry of the channel lumen. Using the nonelectrolyte exclusion method, evidence was obtained that the cis opening of the channel had a larger diameter (< or = 1.9 nm) than the trans opening (< or = 1.6 nm). The channel lumen appeared constricted, with a diameter of < or = 1.2 nm. Cup-shaped lumen geometry was deduced for both channel openings, which appeared to be connected to each other via a central narrow part. The latter contributed significantly to the total electrical resistance and determined the discontinuous character of channel filling with nonelectrolytes. Comparisons of the properties of pores formed by cytolysins of two V. cholerae biotypes (EL Tor and non-O1) indicated that the two ion channels possessed a similar geometry.  相似文献   

19.
Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3β-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease.  相似文献   

20.
A membrane-bound cytolytic pore-forming protein (N-PFP) produced by the pathogenic ameboflagellate Naegleria fowleri was characterized. N-PFP was solubilized from ameba membranes by detergent and enriched 300-fold by gel filtration chromatography. When analyzed by gel electrophoresis, N-PFP migrates with a molecular mass of 66 kDa and 50-54 kDa, under reducing and non-reducing conditions, respectively. In addition to lysing erythrocytes, N-PFP is cytotoxic to several tumor cell lines tested. Its hemolytic activity is not dependent on the presence of divalent cations. N-PFP rapidly depolarizes the membrane potential of microelectrode-impaled chicken embryo myocytes, suggesting that functional channel formation may represent the mode of membrane damage. In planar bilayers, N-PFP forms ion channels with heterogeneous unit conductances ranging between 150 and 400 picosiemens in 0.1 M NaCl and that are relatively resistant to closing by high voltages. Upon heat treatment (75 degrees C, 30 min), N-PFP forms channels with unit conductances that are on average larger than those formed by untreated N-PFP. N-PFP channels are slightly more permeable to cations than to anions. Using a liposome swelling-shrinkage assay, the functional diameter of N-PFP channels is estimated to range between 3.6 and 5.2 nm. N-PFP is immunologically distinct from the PFP/perforin produced by lymphocytes, the terminal components of complement and a PFP from the ameba Entamoeba histolytica, all of which produce pores on target membranes. This protein may have a direct lytic role during target cell killing mediated by N. fowleri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号