共查询到20条相似文献,搜索用时 0 毫秒
1.
Robert W. Coughlin Masuo Aizawa Bruce F. Alexander Marvin Charles 《Biotechnology and bioengineering》1975,17(4):515-526
Electrochemical regeneration of the cofactor nicotinamide adenine dinucleotide (NAD) from its reduced form (NADH) has been coupled with the alcoholdehydrogenation reaction which consumes NAD and produces NADU using alcohol dehydrogenase bound to alumina. Alcohol (reactant) is added directly to the system while aldehyde (product) leaves the system through an ultrafiltration membrane which prevents loss of the cofactor. This system provides a continuous-flow process for carrying out a cofactor-requiring enzymatic reaction with no net loss or consumption of enzyme or cofactor and without the use of reagents for regenerating the cofactor. Although the process shown here is not economically practical, it may be a harbinger of useful and technically feasible chemical reaction systems based on immobilized enzymes requiring cofactors. 相似文献
2.
The efficiency of the direct electrochemical regeneration of NADH from NAD+ was enhanced by applying a cholesterol-modified gold amalgam electrode. The modified electrode was prepared by immersing gold plate in mercury and casting few drops of cholesteryl oleate solution over the gold amalgam. Coenzymatically active NADH was formed from NAD+ directly at the cholesterol-modified gold amalgam electrode which is supposed to hinder the dimerization of the NAD radicals on its membrane surface. The direct electrochemical NAD+ reduction process was used favorably to drive an enzymatic reduction of pyruvate to d-lactate. d-Lactate of 18.2 mm was obtained from pyruvate of 25.3 mm at 21 h of total reaction time in the electrolysis of 50 cm3 solution with the electrode of 6 cm2area. The turnover number for NAD+ was estimated as 1400. 相似文献
3.
NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase family, catalyzes the first step in the catabolic pathway of the prostaglandins. This enzyme oxidizes the 15-hydroxyl group of prostaglandins to produce 15-keto metabolites which are usually biologically inactive. A relatively conserved threonine residue corresponding to threonine 11 of 15-PGDH is proposed to be involved in the interaction with NAD(+). Site-directed mutagenesis was used to examine the important role of this residue. Threonine 11 was changed to alanine (T11A), cysteine (T11C), serine (T11S) or tyrosine (T11Y) and the mutant proteins were expressed in E. coli. Western-blot analysis showed that the expression levels of mutant proteins were comparable to that of the wild-type enzyme. Mutants T11A, T11C and T11Y were found to be inactive. Mutant T11S still retained substantial activity and the K(m) value for prostaglandin E(2) (PGE(2)) was similar to the wild-type enzyme; however, the K(m) value for NAD(+) was increased over 23-fold. These results suggest that threonine 11 may be involved in the interaction with NAD(+) either directly or indirectly and contributes to the full catalytic activity of 15-PGDH. 相似文献
4.
A. Manjón J.M. Obón P. Casanova V.M. Fernández J.L. Ilborra 《Biotechnology letters》2002,24(15):1227-1232
An electrochemical bioreactor with glucose dehydrogenase immobilized on to the electrode surface produced gluconic acid from glucose with concomitant recycling of the NAD+ coenzyme at 0.7 V. Since the enzyme is deactivated during operation at this redox potential, co-immobilization of 3,4-dihydroxybenzaldehyde as mediator allowed the system to operate at 0.2 V and increased both the activity (2.4-times) and the stability of the immobilized enzyme (2.2-times). The different effective electrochemical surfaces resulting from the different mediator immobilization modes are important in determining these three properties. 相似文献
5.
Kochius S Magnusson AO Hollmann F Schrader J Holtmann D 《Applied microbiology and biotechnology》2012,93(6):2251-2264
The applicability of dissolved redox mediators for NAD(P)+ regeneration has been demonstrated several times. Nevertheless, the use of mediators in solutions for sensor applications
is not a very convenient strategy since the analysis is not reagentless and long stabilization times occur. The most important
drawbacks of dissolved mediators in biocatalytic applications are interferences during product purification, limited reusability
of the mediators, and their cost-intensive elimination from wastewater. Therefore, the use of immobilized mediators has both
economic and ecological advantages. This work critically reviews the current state-of-art of immobilized redox mediators for
electrochemical NAD(P)+ regeneration. Various surface modification techniques, such as adsorption polymerization and covalent linkage, as well as
the corresponding NAD(P)+ regeneration rates and the operational stability of the immobilized mediator films, will be discussed. By comparison with
other existing regeneration systems, the technical potential and future perspectives of biocatalytic redox reactions based
on electrochemically fed immobilized mediators will be assessed. 相似文献
6.
Conforti L Fang G Beirowski B Wang MS Sorci L Asress S Adalbert R Silva A Bridge K Huang XP Magni G Glass JD Coleman MP 《Cell death and differentiation》2007,14(1):116-127
The slow Wallerian degeneration protein (Wld(S)), a fusion protein incorporating full-length nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1), delays axon degeneration caused by injury, toxins and genetic mutation. Nmnat1 overexpression is reported to protect axons in vitro, but its effect in vivo and its potency remain unclear. We generated Nmnat1-overexpressing transgenic mice whose Nmnat activities closely match that of Wld(S) mice. Nmnat1 overexpression in five lines of transgenic mice failed to delay Wallerian degeneration in transected sciatic nerves in contrast to Wld(S) mice where nearly all axons were protected. Transected neurites in Nmnat1 transgenic dorsal root ganglion explant cultures also degenerated rapidly. The delay in vincristine-induced neurite degeneration following lentiviral overexpression of Nmnat1 was significantly less potent than for Wld(S), and lentiviral overexpressed enzyme-dead Wld(S) still displayed residual neurite protection. Thus, Nmnat1 is significantly weaker than Wld(S) at protecting axons against traumatic or toxic injury in vitro, and has no detectable effect in vivo. The full protective effect of Wld(S) requires more N-terminal sequences of the protein. 相似文献
7.
Electrochemical regeneration of NAD was performed at a laboratory preparative scale to illustrate both the efficiency and intrinsic simplicity of the electrochemical method. A powerful plug-flow reactor was realized with a flow through graphite felt electrode, the ratio of the effective area of electrode/volume of reactor increased to 380 cm(2)/cm(3). This graphite-felt electrode was able to oxidize NADH coenzyme at a very low overvoltage. On the example of the gluconic acid production catalyzed by glucose dehydrogenase, current as high as 0.1 A was obtained in experience where enzymatic activity was the main limitation. In confirmation of our previous work, the results show that the yield of NADH electrochemical oxidation is better than 99.95%. 相似文献
8.
9.
In preparation for studies aimed at establishing the relationship between immobilized NAD(+) concentration and the concentration of soluble locking-on ligand required to promote biospecific adsorption of NAD(+)-dependent dehydrogenases to immobilized NAD(+) derivatives (the "locking-on" strategy), two approaches were evaluated for varying substitution levels: (i) suitable dilution of the affinity matrix with unsubstituted Sepharose 4B and (ii) direct coupling of the required ligand concentration to the inert matrix. The latter approach was found to be the preferable strategy for evaluation of the locking-on tactic because it produced a more homogeneous distribution of immobilized NAD(+) concentration. Affinity chromatographic studies using S(6)-linked NAD(+) derivatives synthesized to various substitution levels showed that the total accessible immobilized NAD(+) concentration has a direct effect on the locking-on behavior of pyridine nucleotide-dependent dehydrogenases. The one-chromatographic-step bioaffinity purification of l-lactate dehydrogenase (L-LDH, EC 1.1.1.27) from bovine heart illustrates the potential of the locking-on strategy for protein purification applications. 相似文献
10.
Kumar V Carlson JE Ohgi KA Edwards TA Rose DW Escalante CR Rosenfeld MG Aggarwal AK 《Molecular cell》2002,9(4):857-869
The Lcd1p/Mec1p complex is crucial for normal S phase progression and for signaling DNA damage. We show that Lcd1p/Ddc2p and Mec1p in cell extracts bind to DNA ends. Although Lcd1p binds DNA independently of Mec1p, recruitment of Mec1p to DNA requires Lcd1p. DNA binding by Lcd1p is also independent of Rad9p, Rad17p, and Rad24p. Recombinant Lcd1p binds DNA, and this is impaired by Lcd1p mutations that abrogate its in vivo functions. Furthermore, Mec1p is recruited to cdc13-induced DNA damage and HO endonuclease-induced double-strand breaks in vivo. This requires Lcd1p, and recruitment of Lcd1p/Mec1p to cdc13-induced damage is abolished by Lcd1p mutations that abrogate its in vivo functions. Recruitment of Lcd1p to these lesions is independent of Mec1p and Rad9p/Rad24p. Thus, recruitment of Mec1p to DNA lesions by Lcd1p is crucial for the DNA damage response. 相似文献
11.
Gossmann TI Ziegler M Puntervoll P de Figueiredo LF Schuster S Heiland I 《The FEBS journal》2012,279(18):3355-3363
NAD is best known as an electron carrier and a cosubstrate of various redox reactions. However, over the past 20?years, NAD(+) has been shown to be a key signaling molecule that mediates post-translational protein modifications and serves as precursor of ADP-ribose-containing messenger molecules, which are involved in calcium mobilization. In contrast to its role as a redox carrier, NAD(+) -dependent signaling processes involve the release of nicotinamide (Nam) and require constant replenishment of cellular NAD(+) pools. So far, very little is known about the evolution of NAD(P) synthesis in eukaryotes. In the present study, genes involved in NAD(P) metabolism in 45 species were identified and analyzed with regard to similarities and differences in NAD(P) synthesis. The results show that the Preiss-Handler pathway and NAD(+) kinase are present in all organisms investigated, and thus seem to be ancestral routes. Additionally, two pathways exist that convert Nam to NAD(+) ; we identified several species that have apparently functional copies of both biosynthetic routes, which have been thought to be mutually exclusive. Furthermore, our findings suggest the parallel phylogenetic appearance of Nam N-methyltransferase, Nam phosphoribosyl transferase, and poly-ADP-ribosyltransferases. 相似文献
12.
A new and simple route for the preparation of immobilized NAD+ on carboxyl-activated silica nanoparticles activated by γ-aminpropyltriethoxysilane and glutaric anhydride was developed. In addition, formate dehydrogenase, keto-reductase and the silica nanoparticle-attached NAD+ were applied to catalyze the coupled reactions for production of l-lactate with the cofactor regenerated within the reaction cycle. As indicated by thermogravimetric analysis and FT-IR, the silica nanoparticles were successfully activated and the loading of carboxyl groups was 0.53 mmol g?1 particle. The amount of immobilized NAD+ on the support was 73 mg g?1 particle. With 0.2 M pyruvate and 3 M formate, 0.16 M l-lactate was produced after the coupled reactions. The immobilized system showed excellent efficiency and stabilities in recycling, and it retained 60 % residual activity even after six reuses. 相似文献
13.
14.
HvnA and HvnB are proteins secreted by Vibrio fischeri ES114, an extracellular light organ symbiont of the squid Euprymna scolopes, that catalyze the transfer of ADP-ribose from NAD(+) to polyarginine. Based on this activity, HvnA and HvnB were presumptively designated mono-ADP-ribosyltransferases (ARTases), and it was hypothesized that they mediate bacterium-host signaling. We have cloned hvnA and hvnB from strain ES114. hvnA appears to be expressed as part of a four-gene operon, whereas hvnB is monocistronic. The predicted HvnA and HvnB amino acid sequences are 46% identical to one another and share 44% and 34% identity, respectively, with an open reading frame present in the Pseudomonas aeruginosa genome. Four lines of evidence indicate that HvnA and HvnB mediate polyarginine ADP-ribosylation not by ARTase activity, but indirectly through an NAD(+)-glycohydrolase (NADase) activity that releases free, reactive, ADP-ribose: (i) like other NADases, and in contrast to the ARTase cholera toxin, HvnA and HvnB catalyzed ribosylation of not only polyarginine but also polylysine and polyhistidine, and ribosylation was inhibited by hydroxylamine; (ii) HvnA and HvnB cleaved 1, N(6)-etheno-NAD(+) and NAD(+); (iii) incubation of HvnA and HvnB with [(32)P]NAD(+) resulted in the production of ADP-ribose; and (iv) purified HvnA displayed an NADase V(max) of 400 mol min(-1) mol(-1), which is within the range reported for other NADases and 10(2)- to 10(4)-fold higher than the minor NADase activity reported in bacterial ARTase toxins. Construction and analysis of an hvnA hvnB mutant revealed no other NADase activity in culture supernatants of V. fischeri, and this mutant initiated the light organ symbiosis and triggered regression of the light organ ciliated epithelium in a manner similar to that for the wild type. 相似文献
15.
Cantó C Houtkooper RH Pirinen E Youn DY Oosterveer MH Cen Y Fernandez-Marcos PJ Yamamoto H Andreux PA Cettour-Rose P Gademann K Rinsch C Schoonjans K Sauve AA Auwerx J 《Cell metabolism》2012,15(6):838-847
As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function. 相似文献
16.
Zhou Y Wang L Yang F Lin X Zhang S Zhao ZK 《Applied and environmental microbiology》2011,77(17):6133-6140
NAD (NAD(+)) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD(+) level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD(+) auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD(+) de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD(+). We then constructed the NAD(+)-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD(+) biosynthesis in cells harboring the ntt4 gene. The minimal NAD(+) level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD(+), while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD(+) was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD(+) concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed. 相似文献
17.
Kuhn I Kellenberger E Said-Hassane F Villa P Rognan D Lobstein A Haiech J Hibert M Schuber F Muller-Steffner H 《Bioorganic & medicinal chemistry》2010,18(22):7900-7910
Schistosomiasis is a major tropical parasitic disease. For its treatment, praziquantel remains the only effective drug available and the dependence on this sole chemotherapy emphasizes the urgent need for new drugs to control this neglected disease. In this context, the newly characterized Schistosoma mansoni NAD(+) catabolizing enzyme (SmNACE) represents a potentially attractive drug target. This potent NAD(+)glycohydrolase, which is localized to the outer surface (tegument) of the adult parasite, is presumably involved in the parasite survival by manipulating the host's immune regulatory pathways. In an effort to identify SmNACE inhibitors, we have developed a sensitive and robust fluorometric high-throughput screening assay. The implementation of this assay to the screening of a highly diverse academic chemical library of 14,300 molecules yielded, after secondary assays and generation of dose-response curves, the identification of two natural product inhibitors, cyanidin and delphinidin. These confirmed hits inhibit SmNACE with IC(50) values in the low micromolar range. To rationalize the structure-activity relationship, several related flavonoids were tested, thereby leading to the identification of 15 additional natural product inhibitors. A selection of representative flavonoid inhibitors indicated that although they also inhibit the homologous human CD38, a selectivity in favor of SmNACE could be reached. Docking studies indicated that these inhibitors mimic the binding mode of the enzyme substrate NAD(+) and suggested the pharmacophoric features required for SmNACE active site recognition. 相似文献
18.
Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells 总被引:1,自引:0,他引:1
Romanello M Padoan M Franco L Veronesi V Moro L D'Andrea P 《Biochemical and biophysical research communications》2001,285(5):1226-1231
ADP-ribosyl cyclase/CD38 is a bifunctional enzyme that catalyzes at its ectocellular domain the synthesis from NAD(+) (cyclase) and the hydrolysis (hydrolase) of the calcium-mobilizing second messenger cyclic ADP ribose (cADPR). Furthermore, CD38 mediates cADPR influx inside a number of cells, thereby inducing Ca(2+) mobilization. Intracellularly, cADPR releases Ca(2+) from ryanodine-sensitive pools, thus activating several Ca(2+)-dependent functions. Among these, the inhibition of osteoclastic-mediated bone resorption has been demonstrated. We found that HOBIT human osteoblastic cells display ADP-ribosyl cyclase activity and we examined the effects of CD38 stimulation on osteoblasts function. Extracellular NAD(+) induced elevation of cytosolic calcium due to both Ca(2+) influx from the extracellular medium and Ca(2+) release from ryanodine-sensitive intracellular stores. Culturing these cells in the presence of NAD(+) caused a complete growth arrest with a time-dependent decrease of cell number and the appearance of apoptotic nuclei. The first changes could be observed after 24 h of treatment and became fully evident after 72-96 h. We propose a role of extracellular NAD(+) in bone homeostatic control. 相似文献
19.
Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. 总被引:4,自引:0,他引:4
下载免费PDF全文

S D Elzinga A L Bednarz K van Oosterum P J Dekker L A Grivell 《Nucleic acids research》1993,21(23):5328-5331
We have previously described the characterisation of an abundant mitochondrial protein (p40) that binds specifically to 5'-untranslated leaders of mitochondrial mRNAs in yeast. p40 consists of two polypeptides with M(r) of 40 and 39 kDa. Limited sequence analysis of p40 identifies it as the Krebs cycle enzyme NAD(+)-dependent isocitrate dehydrogenase (Idh). Both enzyme and RNA-binding activities are specifically lost in cells containing disruptions in either IDH1 or IDH2, the nuclear genes encoding the two subunits of the enzyme, thus conclusively identifying p40 as Idh and showing that both activities are dependent on the simultaneous presence of both subunits. Although we still must ascertain whether and how either function of Idh is regulated and whether the two functions are compatible or mutually exclusive, this combination of dehydrogenase activity and RNA-binding in a single protein may be part of a general regulatory circuit linking the need for mitochondrial function to mitochondrial biogenesis. 相似文献
20.
Hirschey MD 《Cell metabolism》2011,14(6):718-719
Seven mammalian sirtuins are nicotinamide adenine dinucleotide (NAD)(+)-dependent deacetylases and are important modulators of energy metabolism and stress resistance. Two new studies by Du et al. (2011) and Peng et al. (2011) identify a new enzymatic activity for SIRT5, expanding the cellular repertoire of posttranslational modifications targeted by the sirtuins. 相似文献