首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied the interactions between short- and long-term plastic changes taking place during the acquisition of a classical eyeblink conditioning and following high-frequency stimulation (HFS) of the reuniens nucleus in behaving mice. Synaptic changes in strength were studied at the reuniens-medial prefrontal cortex (mPFC) and the reuniens-CA1 synapses. Input/output curves and a paired-pulse study enabled determining the functional capabilities of the two synapses and the optimal intensities to be applied at the reuniens nucleus during classical eyeblink conditioning and for HFS applied to the reuniens nucleus. Animals were conditioned using a trace paradigm, with a tone as conditioned stimulus (CS) and an electric shock to the trigeminal nerve as unconditioned stimulus (US). A single pulse was presented to the reuniens nucleus to evoke field EPSPs (fEPSPs) in mPFC and CA1 areas during the CS-US interval. No significant changes in synaptic strength were observed at the reuniens-mPFC and reuniens-CA1 synapses during the acquisition of eyelid conditioned responses (CRs). Two successive HFS sessions carried out during the first two conditioning days decreased the percentage of CRs, without evoking any long-term potentiation (LTP) at the recording sites. HFS of the reuniens nucleus also prevented the proper acquisition of an object discrimination task. A subsequent study revealed that HFS of the reuniens nucleus evoked a significant decrease of paired-pulse facilitation. In conclusion, reuniens nucleus projections to prefrontal and hippocampal circuits seem to participate in the acquisition of associative learning through a mechanism that does not required the development of LTP.  相似文献   

2.
Even partial hippocampal lesions in rats resulted in a disturbance of time interval determination over the course of several months (1200-1500 presentations) other complex conditioned reactions being preserved. As distinct from the control animals, the long period of failure of time interval counting was absent in rats receiving Mexidol. Continuous time conditioning took place in these animals. Due to substantial improvement of autonomic processes and emotional reactions, it was possible to present a higher number of conditioned stimuli in experiments. Mexidol seems to improve the compensatory and recovery processes after brain injuries: the impaired functions recover faster, the rate of the retrograde degeneration in the lesioned brain structures decreases, phenomena like Monakov's diaschis are not observed etc.  相似文献   

3.
Low doses (10 or 350 ME) of human interferon-alpha (HIA) were intranasally applied to young (3-4 months) and ageing (12-15 months) Wistar rats during food conditioning. In control groups, development of the conditioned reflex to acoustic stimulus (tone) did not differ significantly in young and ageing rats in the course of chronic applications of the HIA. However, the control ageing rats were better than young rats in time-interval conditioning. Small doses of HIA do not cause anorexia in rats whereas large doses do so. Tone-conditioning did not change in rats of both ages when they were treated with 10 ME of the HIA; moreover, 350 ME increased food motivation, especially in young rats. Time-interval conditioning in aging rats was descended by both doses to the level of young rats, whereas in young rats it did not change at all. We suggest that these differences between ages may by accounted for be different affinity and concentration of micro-opiod receptors (which are the targets for the HIA) in the brain structures responsible for food behaviour, and for counting time intervals.  相似文献   

4.
We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus) was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus) was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits.  相似文献   

5.
Preliminary presentation of future conditioned stimulus without reinforcement delayed and then accelerated subsequent elaboration of defensive conditioned reflex to this stimulus in rats. Preliminary presentation of resembling stimuli influenced the speed of conditioning in a lesser degree. It is suggested that such changes are due to formation of a local conditioned reflex to the future conditioned stimulus.  相似文献   

6.
Estradiol accelerates extinction of LiCl-induced conditioned taste avoidance when it is present continuously before and during acquisition. We have suggested that the effect of estradiol on extinction is due to its illness-associated, rather than learning-associated, properties. If this were the case, then one would expect estradiol to act before but not during acquisition. This expectation is based on previous work showing attenuation of learned taste avoidance when rats are given distal preexposure (greater than 24 h before conditioning) or proximal preexposure (less than 24 h before conditioning) to the illness-inducing agent LiCl before acquisition of a LiCl-induced conditioned taste avoidance. In three separate experiments, estradiol was administered during three different time periods via subcutaneous implantation of a 10-mm estradiol-filled capsule. In each experiment, the extinction of estradiol-treated females was compared to that of females implanted with empty capsules. In the first experiment, female rats were given distal exposure to estradiol before acquisition. Capsules were implanted 11 days before acquisition and were removed 2 days before acquisition. In the second experiment, female rats were given proximal exposure to estradiol before acquisition. Capsules were implanted 2.5 h before LiCl was paired with a sucrose solution and were removed 16.5 h later. In the third experiment, female rats were given exposure to estradiol during acquisition. Capsules were implanted at the same time as LiCl administration and were removed 18 h later. The only estradiol-treated females to show accelerated extinction were those given distal preexposure to estradiol in Experiment 1. These data do not support a learning-associated hypothesis and only partially support an illness-associated hypothesis. The failure to find accelerated extinction following proximal preexposure may reflect an inappropriate choice of the parameters used in the experiment or a difference in the stimulus properties of LiCl and estradiol that allow each to serve as conditioning and preexposure agents in conditioned taste avoidance paradigms [corrected].  相似文献   

7.
Several phases were distinguished in single-unit responses in areas 3 and 4 during defensive conditioning to acoustic stimulation: an initial response, short inhibition of the spike discharge, early and late after-discharges, and changes arising after the end of acoustic stimulation. The initial spike response appeared or intensified (if present already) in the first period of defensive conditioning parallel with an increase in spontaneous unit activity. After-discharges appeared later. The conditioned-reflex movement usually began 100–400 msec after stimulation began. This latent period of the first movement was the same whether for a real conditioned reflex or an after-discharge. Comparison of the latent periods of conditioned movements with the phases of the unit responses showed that the conditioned responses of the cortical neuron were primarily modified after-discharges of neurons evoked by a conditioned stimulus. Differential unit responses to acoustic stimulation, also based on after-discharges, were formed just as actively as positive. The basic role of reinforcement during conditioning is not to increase the excitability of the neurons, which is important in connection with their acquisition of polysensory properties, but to modify the after-discharges of the neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 339–347, July–August, 1978.  相似文献   

8.
An experiment is reported in which the relationship between the intensity of a preexposed stimulus and latent inhibition was investigated, using the taste aversion learning paradigm in rats. Two concentrations of a saline solution (high, 1%; and low, 0.25%) were used during preexposure and conditioning phases in a factorial design. Two control conditions without preexposure were added, one for each stimulus concentration during conditioning. The known effect of conditioned stimulus (CS) intensity during conditioning was confirmed: the more concentrated the solution used in conditioning, the higher the acquisition rate. A direct relationship was observed between the CS intensity used during preexposure and the latent inhibition effect: the more concentrated the solution during preexposure, the lower the acquisition rate of conditioning. The implications of these results for latent inhibition theories are considered.  相似文献   

9.
The review concerns the effects of a variety of stimuli on the reproduction of conditioned reflexes. By the literature data, during conditioning of any type, besides the single stimulus intentionally applied by an experimenter as a conditioned one, an animal perceives the whole complex of stimuli (acoustic, visual, olfactory, algesic, and other exteroceptive, proprioceptive, and interoceptive stimuli), including those of the environment and time of the day during training. Many of these stimuli are essential for the reproduction of the acquired habit. The complex of stimuli that act on an animal during the reproduction should in all parameters correspond to that perceived by the animal during training. If the complexes differ at least in one stimulus, the reproduction of the reflex may fail.  相似文献   

10.
The purpose of this study was to examine whether the progressive disappearance of short-latency conditioned responses, or inhibition of delay, observed in Pavlovian conditioning with long inter-stimulus intervals, could be reverted by the presentation of a novel stimulus. In one experiment, two groups of rabbits received extensive training with a short (250 ms) or a long (1500 ms) tone that overlapped and terminated with a periorbital shock unconditioned stimulus. After training, the presentation of an extraneous stimulus prior to tone onset produced a reinstatement of short latency CRs in the group trained with the long CS, but did not affect CR latency in the group trained with the short CS. This finding is consistent with Pavlov's (1927) view that conditioning with long conditioned stimuli involves the acquisition of response tendencies in the early portion of the stimulus that are subsequently suppressed by the development of an inhibitory process.  相似文献   

11.
The role of the hippocampus in delay eyeblink conditioning (DEC) remains controversial. Here, we investigated the involvement of the hippocampus in DEC with a soft tone as the conditioned stimulus (CS) by using electrolytic lesions or muscimol inactivation of guinea pig dorsal hippocampus. Interestingly, when a soft tone was used as a CS, electrolytic lesions of the hippocampus significantly retarded acquisition of the conditioned response (CR), and muscimol infusions into hippocampus distinctly inhibited the acquisition and expression of CR, but had no significant effect on consolidation of well-learned CR. In contrast, both electrolytic lesions and muscimol inactivation of hippocampus produced no significant deficits in the CR when a loud tone was used as the CS. These results demonstrate that the hippocampus is essential for the DEC when the delay task was rendered more difficult.  相似文献   

12.
Three experiments were conducted using a conditioned taste aversion procedure with rats to examine the effect of nonreinforced presentations of a conditioned stimulus (CS) on its ability to compete with a target stimulus for manifest conditioned responding. Two CSs (A and B) were presented in a serial compound and then paired with the unconditioned stimulus. CS A was first paired with the US and then presented without the US (i.e., extinction) prior to reinforced presentation of the AB compound. Experiment 1 showed that A was poor at competing with B for conditioned responding when given conditioning and extinction prior to reinforcement of AB relative to a group that received both A and B for the first time during compound conditioning. That is, an extinguished A stimulus allowed greater manifest acquisition to B. Experiment 2 found that extinction treatment produced a poor CR to the pretrained and extinguished CS itself following compound conditioning. Experiment 3 found that interposing a retention interval after extinction of A and prior to compound conditioning enhanced A's ability to compete with B. The results of these experiments are discussed with regard to different theories of extinction and associative competition.  相似文献   

13.
The hippocampus is importantly involved in learning and memory, and is severely impacted by aging. In in vitro hippocampal slices, both the post-burst afterhyperpolarization (AHP) and spike-frequency accommodation are reduced in hippocampal pyramidal neurons after hippocampally-dependent trace eyeblink conditioning, indications of increased cellular excitability. The AHP results from the activation of outward potassium currents, including sI(AHP) and muscarine-sensitive I(M). The AHP is significantly increased in aging hippocampal neurons, potentially contributing to age-associated learning deficits. Compounds which reduce the AHP and spike-frequency accommodation could facilitate learning in normal aging or in age-associated dementias such as Alzheimer's disease. The cholinesterase inhibitor metrifonate enhances trace eyeblink conditioning by aging rabbits and reduces the AHP and accommodation in hippocampal CA1 neurons in a dose-dependent manner. These reductions are mediated by muscarinic cholinergic transmission as they are blocked by atropine. Hippocampal neurons from metrifonate treated but behaviorally naive rabbits were more excitable and not desensitized to the effects of metrifonate since the AHP and accommodation were further reduced when metrifonate was bath applied to the neurons. These observations suggest that the facilitating effect of chronic metrifonate on acquisition of hippocampally dependent tasks is mediated at least partially by increasing the baseline excitability of CA1 pyramidal neurons. The issue of whether learning can be facilitated with muscarinic cholinergic agonists, in addition to cholinesterase inhibitors, was addressed by training aging rabbits during intravenous treatment with the M1 agonist CI1017. A dose-dependent enhancement of acquisition was observed, with rabbits receiving 1.0 or 5.0 mg/ml CI1017 showing comparably improved learning rates as those receiving 0.5 mg/ml or vehicle. Sympathetic side effects, mainly excess salivation, were seen with the 5.0 mg/ml dose. Post-training evaluations suggested that the effective doses of CI1017 were enhancing responsivity to the tone conditioned stimulus. These studies suggest that muscarinic cholinergic neurotransmission is importantly involved in associative learning; that learning in aging animals may be facilitated by enhancing cholinergic transmission; and that the facilitation may be mediated through actions on hippocampal neurons.  相似文献   

14.
Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA) task (hippocampus-dependent contextual fear-learning task) drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to drive CP-AMPARs into the CA3-CA1 synapses of ovariectomized rats only when estrogen was present. Thus, changes in the stoichiometry of AMPA receptors during learning depend on estrogen levels. Furthermore, the induction of long-term potentiation (LTP) after IA task was prevented during the proestrous period, while intact LTP is still expressed after IA task during other period of the estrous cycle. Consistent with this finding, rats conditioned by IA training failed to acquire hippocampus-dependent Y-maze task during the proestrous period. On the other hand, during other estrous period, rats were able to learn Y-maze task after IA conditioning. These results suggest that high estrogen levels prevent the IA learning-induced delivery of CP-AMPARs into hippocampal CA3-CA1 synapses and limit synaptic plasticity after IA task, thus preventing the acquisition of additional learning.  相似文献   

15.
The activity of 109 neurons in the compact and diffuse parts of the pedunculopontine tegmental nucleus (PPTg) was recorded in freely moving rabbits during the acquisition and actualization of the defensive instrumental conditioned reflex. It was found that 47% of the recorded neurons responded to a conditioned stimulus (CS). This finding suggests the involvement of the PPTg in the instrumental conditioning. A significant prevalence of the excitatory conditioned responses to the CS suggests the predominantly activating influence of the PPTg on its projection structures during conditioning. The neuronal responses to the CS were classified into several basic patterns reflecting stimulus effects, the structure of the behavioral act, and the nature of the reinforcement. They indicated the involvement of the PPTg in attention, motor learning, and reinforcement. A significant decrease in the reactivity of the CS of the PPTg neurons as a result of learning specialization was shown. The revealed differences in the associative and reactive properties (with respect to CS) between the neurons of the compact and diffuse PPTg parts testify to the functional heterogeneity of this structure and suggest the leading role of the cholinergic compact part of the PPTg in the instrumental defensive conditioning. Thus, the obtained evidence suggests the involvement of the PPTg in the mechanisms of attention and acquisition of the active defensive motor conditioning.  相似文献   

16.
In white rats resuscitated after 10-minutes stop of the blood circulation, conditioned switching over was elaborated on the basis of alimentary and defensive instrumental reflexes and the effect was studied of neurotizing influences. Single application of electrocutaneous pain stimulus in alimentary situation ("collision") led to more expressed disturbances of conditioned activity in resuscitated rats than in intact ones. Differentiation of a signal different from the positive conditioned stimulus only by the height of the tone, was practically not elaborated in resuscitated rats, and the disturbance of the conditioned alimentary reflex to the reinforced signal appearing during differentiation elaboration, was manifest in them to a greater degree. The obtained data testify that even a short-time brain ischemia, accompanied by a fast and full restoration of the neurological status, leads to functional defects of the CNS appearing at subsequent neurotic influences.  相似文献   

17.
In this experiment we present a technique to measure learning and memory. In the trace fear conditioning protocol presented here there are five pairings between a neutral stimulus and an unconditioned stimulus. There is a 20 sec trace period that separates each conditioning trial. On the following day freezing is measured during presentation of the conditioned stimulus (CS) and trace period. On the third day there is an 8 min test to measure contextual memory. The representative results are from mice that were presented with the aversive unconditioned stimulus (shock) compared to mice that received the tone presentations without the unconditioned stimulus. Trace fear conditioning has been successfully used to detect subtle learning and memory deficits and enhancements in mice that are not found with other fear conditioning methods. This type of fear conditioning is believed to be dependent upon connections between the medial prefrontal cortex and the hippocampus. One current controversy is whether this method is believed to be amygdala-independent. Therefore, other fear conditioning testing is needed to examine amygdala-dependent learning and memory effects, such as through the delay fear conditioning.  相似文献   

18.
Traditional defensive and operant food reflexes were used to investigate neuronal responses of the mesencephalic reticular formation. It was found that these neurons may be divided into different groups according to function, depending on how they respond to positive conditioning stimuli. Of the two main groups of neurons with sustained tonic reactions one is activated in response to positive acoustic conditioning stimulation; it no longer reacts to the same stimulus after extinction of the reflex, while the other only becomes involved in response to positive stimulation accompanying the initiation of movement. Neurons belonging to the second group begin to respond directly to acoustic stimulation after extinction of the conditioned reflex. Neurons of the mesencephalic reticular formation can thus exercise additional tonic ascending effects both in the production and inner inhibition of the conditioned reflex. The group of neurons with a phasic reaction, i.e., a double response (a direct response to sound and another produced by movement) displayed a drop in spontaneous activity during the shaping of inhibition of differentiation and of extinction in particular. It was found that the initial changes in the spike response of reticular formation neurons during conditioning and pseudo-conditioning are similar. There are thus grounds for stating that neurons of the mesencephalic reticular formation participate in the shaping, production, and inner inhibition of traditional and operant conditioned reflexes in a differentiated capacity rather than as a population reacting identically.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 161–171, March–April, 1986.  相似文献   

19.
1.) By extracellular and intracellular recordings of the red nucleus (RN) cell activity, we investigated enhancement of signaling effectiveness at the cortico-rubral synapses underlying the establishment of classical conditioning mediated by RN in the cat. The classical conditioning of forelimb flexion was produced by pairing the conditioned stimulus (CS) to the cerebral peduncle (CP) with the unconditioned stimulus (US) to the forelimb skin at an interval of 100 msec for about a week. 2.) The increased responsiveness of RN cells to the CS was correlated with acquisition of the conditioned forelimb flexion, i.e. RN cells responded to the CS with higher firing probability in the animals which received the paired conditioning than those in the animals which received the CS alone or pairing of the CS and the US at random intervals or those in the naive animals which did not receive any training. 3.) Monosynaptic excitation of RN cells in response to the single pulse to CP was most enhanced in the animals which received the paired conditioning. By contrast, response of RN cells, as well as the behavioral response, induced by stimulation of the cerebellar interpositus nucleus (IP) was not enhanced after the paired conditioning. The difference between the responses to the stimulation of CP and IP suggested that the primary site of neuronal change is the cortico-rubral synapses. 4.) In the animals that received the paired conditioning, the excitatory postsynaptic potentials (EPSPs) induced by stimulation of CP had fast-rising components superimposed on the normal slow-rising EPSPs. On the other hand, most of the CP-EPSPs recorded in the naive animals showed a slow time course. The slow time course of the CP-EPSPs has been attributed to the peripheral localization of the cortico-rubral synapses on the dendrites of RN cells. 5.) The electrotonic length of RN cells in the animals which received the paired conditioning was not shorter than that in the naive animals. Therefore, it was suggested that the appearance of the fast-rising component in the CP-EPSPs is cause by formation of the new cortico-rubral synapses on proximal portions of the soma-dendritic membrane of RN cells. 6.) Since it has been established that new synapses formed by collateral sprouting are retained for more than several months, the formation of new synaptic connections could underlie long-lasting behavioral modification.  相似文献   

20.
A conditioned response not only reflects knowledge of an association between two events, a CS and a US, it also reflects knowledge about the timing of these events. A neural network and set of learning rules that generates appropriately timed conditioned response waveforms is presented. The model is capable of simulating some of the basic temporal properties of conditioned responses exhibited in biological systems, including (1) decreasing onset latency during acquisition training, (2) peak amplitude accurring at the temporal locus of the US, (3) inhibition of delay, and (4) trace conditioning. The model is also capable of simulating complex CR waveforms under certain conditions, and these simulations are compared with the results of behavioral experiments. The temporally adaptive responses are achieved by virtue of stimulus trace processes that are built into the network architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号