首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
睾丸间质干细胞(stem Leydig cells,SLCs)是哺乳动物睾丸间质内的一种成体干细胞,可以分化成为成熟的睾丸间质细胞,参与精子发生。目前,仅在人、大鼠和小鼠中成功分离出SLCs,并证实其具有分化成为睾酮分泌细胞的潜能。最新研究发现:PDGFRα、Nestin、Thy-1、CD51和COUPTFII等可作为SLCs的分子标记,但并不具有特异性。迄今,只在大鼠中建立了SLCs的基本分离培养体系。因此,本文拟从大鼠等SLCs的分子标记、分离培养条件、增殖分化调控以及哺乳动物LCs在精子发生过程中作用的研究进展等作一综述,以期为哺乳动物SLCs研究提供科学参考。  相似文献   

2.
睾丸间质干细胞(stem Leydig cells, SLCs)是哺乳动物睾丸间质内的一种成体干细胞,可以分化成为成熟的睾丸间质细胞,参与精子发生。目前,仅在人、大鼠和小鼠中成功分离出SLCs,并证实其具有分化成为睾酮分泌细胞的潜能。最新研究发现:PDGFRα、Nestin、Thy-1、CD51和COUP-TFII等可作为SLCs的分子标记,但并不具有特异性。迄今,只在大鼠中建立了SLCs的基本分离培养体系。因此,本文拟从大鼠等SLCs的分子标记、分离培养条件、增殖分化调控以及哺乳动物LCs在精子发生过程中作用的研究进展等作一综述,以期为哺乳动物SLCs研究提供科学参考。  相似文献   

3.
雄性生殖系干细胞(Male germ-line stem cells, mGSCs)是一群具有高度自我更新能力和分化潜能的细胞, 是雄性成体内唯一可复制的二倍体永生细胞。转基因技术与雄性生殖系干细胞异体及异种移植技术相结合, 将会为克隆动物、转基因动物生产及一些人类遗传性疾病的基因治疗提供新的机遇与途径。本试验采用组合酶消化和选择贴壁法, 对5月龄、6月龄牛胎儿及新生牛雄性生殖系干细胞体外培养及分化进行了研究。试验结果显示, 睾丸支持细胞对雄性生殖系干细胞体外增殖、分化所必需的, 同时对数期睾丸支持细胞对雄性生殖系干细胞贴壁、增殖与分化效果明显; 共培养16 d后, 牛雄性生殖系干细胞分化为长形精子细胞, 试验建立了牛雄性生殖系干细胞体外诱导培养分化体系。  相似文献   

4.
精原干细胞(spermatogonial stem cells,SSCs)是睾丸内具有自我复制和分化为精子潜能的干细胞,它的体外培养是精子发生机理研究和制作转基因动物等的新途径[1,2].近几年的研究表明,SSCs在体外的自我增殖需要GDNF(glial cell line-derived neu-rotrophie factor)因子和饲养层细胞等的支持[3-10].并且睾丸支持细胞(Sertoli's cells)和血清都导致培养的SSCs分化[1,6].因此,使用无血清培养基培养高度纯化的SSCs是培养成败的关键之一.  相似文献   

5.
精原干细胞(spermatogonial stem cells,SSCs)是雄性生殖系干细胞,位于睾丸曲细精管基膜上,既具有自我更新潜能,又具有定向分化潜能,是自然状态下出生后动物体内在整个生命过程中进行自我更新并能将基因传递至子代的惟一成体干细胞。根据国内外最新相关进展,系统评述了猪SSCs分离纯化、体外培养及移植等方面的现状及问题。  相似文献   

6.
郭彦  杨乐乐  戚华宇 《遗传》2022,(7):591-609
精原干细胞(spermatogonial stem cells, SSCs)是成年动物睾丸中的成体干细胞,具有自我更新与分化的能力。小鼠(Mus musculus)精原干细胞来源于胚胎期的原始生殖细胞(primodial germ cells, PGCs),小鼠出生前原始生殖细胞处于有丝分裂静止状态,出生后恢复增殖并由曲细精管中央迁移至管壁基质,建立稳定的精原干细胞克隆。成熟小鼠的精原干细胞周期性地启动精子发生以维持雄性动物长期稳定的生殖能力。精原干细胞在其建立和成熟后是否具有特征上的差异目前尚不清楚。本研究在前期建立的不同年龄小鼠精原干细胞(表达多能性基因Pou5f1编码的OCT4)转录组数据基础上,对小鼠新生期(出生后3天)、幼年期(出生后7天)和成熟期(2~3月龄)精原干细胞的基因表达差异进行了生物信息学分析,包括差异表达基因(differentially expression genes,DEGs)的筛选、DEGs编码的蛋白相互作用网络(protein-protein interaction,PPI)的建立、功能聚类富集(Gene Ontology,GO)和通路分析(Kyoto...  相似文献   

7.
雄性生殖干细胞(male germ stem cells , mGSCs)来源于原始生殖细胞(primordial germ cells ,PGCs) ,且终生存在于性分化后的睾丸中。从20周胎牛分离睾丸细胞,2步连续贴壁速率差法能有效纯化胎牛mGSCs ,经流式细胞仪检测,CD9阳性细胞的比例达到95.8 %。原代与支持细胞共培养,出现隆突状和鸟巢状两种细胞集落。获得1株传至4代仍呈现集落生长的细胞株,且集落AKP染色阳性。对第3代鸟巢状细胞集落免疫组化和诱导分化分析,结果显示:SSEA1和Oct-4免疫组化染色阳性;短期内可自发形成c-kit染色阳性的分化态精原细胞;定向诱导分化形成了表达神经丝蛋白(Neuro filament ,NF)的神经样细胞和表达α-actin的心肌样细胞团。试验结果表明:20周胎牛雄性生殖干细胞在体外可形成具有多分化潜能性的类胚胎干(embryonic stem,ES)细胞。  相似文献   

8.
睾丸支持细胞对精原干细胞发育的调节   总被引:1,自引:0,他引:1  
精原干细胞(spermatogonial stem cells,SSCs)是位于睾丸曲精小管基膜上既能自我更新,又能定向分化的一类原始精原细胞.鉴于其独具的生物学特性,SSCs研究在干细胞生物学、医学、畜牧业等领域均具有重要意义,但目前有关其更新、分化的调控机制仍不清楚.干细胞的发育受其外部特定发育环境及其内在因素的综合调控.最近以睾丸支持细胞为主要结构组分的发育环境对SSCs行为的调控研究备受关注且取得快速进展.综合相关报道,主要就哺乳动物睾丸支持细胞对SSCs更新、分化的调节进行了评述,以期为本领域及其他干细胞研究提供借鉴.  相似文献   

9.
雄性生殖干细胞(male germ stem cells, mGSCs)来源于原始生殖细胞(primordial germ cells, PGCs),且终生存在于性分化后的睾丸中。从20周胎牛分离睾丸细胞,2步连续贴壁速率差法能有效纯化胎牛mGSCs,经流式细胞仪检测,CD9阳性细胞的比例达到 95.8%。原代与支持细胞共培养,出现隆突状和鸟巢状两种细胞集落。获得1株传至4代仍呈现集落生长的细胞株,且集落AKP染色阳性。对第3代鸟巢状细胞集落免疫组化和诱导分化分析,结果显示:SSEA1和Oct-4免疫组化染色阳性;短期内可自发形成c-kit染色阳性的分化态精原细胞;定向诱导分化形成了表达神经丝蛋白(Neuro filament,NF)的神经样细胞和表达α-actin的心肌样细胞团。试验结果表明:20周胎牛雄性生殖干细胞在体外可形成具有多分化潜能性的类胚胎干(embryonic stem, ES)细胞。  相似文献   

10.
多能干细胞(pluripotent stem cells,PSCs)是可以无限增殖更新并具有分化为各种组织细胞潜能的一类干细胞系。而其中的i PS细胞(induced pluripotent stem cells,i PS cells)的建立更是进一步拉近了干细胞和临床疾病治疗的距离,并且对农业经济发展和动物医学领域具有巨大的潜在应用价值。然而目前干细胞深层次的机制与应用研究主要还是集中在小鼠和人类干细胞上,而对于农牧业与兽医学关系紧密的大动物干细胞的研究主要还在初步建立与应用尝试阶段。而本文通过归纳整理相关文献,简述了胚胎多能干细胞以及诱导多能干细胞在猪、牛、马等大动物中的建立研究现状。  相似文献   

11.
12.
Leydig cells are the testosterone-producing cells of the testis. The adult Leydig cell (ALC) population ultimately develops from undifferentiated mesenchymal-like stem cells present in the interstitial compartment of the neonatal testis. Distinct stages of ALC development have been identified and characterized. These include stem Leydig cells (SLCs), progenitor Leydig cells, immature Leydig cells, and ALCs. This review describes our current understanding of the SLCs in the fetal, prenatal, peripubertal, adult, and aged rat testis, as well as recent studies of the differentiation of steroidogenic cells from the stem cells of other organs.  相似文献   

13.
The ability to identify and isolate lineage-specific stem cells from adult tissues could facilitate cell replacement therapy. Leydig cells (LCs) are the primary source of androgen in the mammalian testis, and the prospective identification of stem Leydig cells (SLCs) may offer new opportunities for treating testosterone deficiency. Here, in a transgenic mouse model expressing GFP driven by the Nestin (Nes) promoter, we observed Nes-GFP+ cells located in the testicular interstitial compartment where SLCs normally reside. We showed that these Nes-GFP+ cells expressed LIFR and PDGFR-α, but not LC lineage markers. We further observed that these cells were capable of clonogenic self-renewal and extensive proliferation in vitro and could differentiate into neural or mesenchymal cell lineages, as well as LCs, with the ability to produce testosterone, under defined conditions. Moreover, when transplanted into the testes of LC-disrupted or aging models, the Nes-GFP+ cells colonized the interstitium and partially increased testosterone production, and then accelerated meiotic and post-meiotic germ cell recovery. In addition, we further demonstrated that CD51 might be a putative cell surface marker for SLCs, similar with Nestin. Taken together, these results suggest that Nes-GFP+ cells from the testis have the characteristics of SLCs, and our study would shed new light on developing stem cell replacement therapy for testosterone deficiency.  相似文献   

14.
精原干细胞自我更新和分化的调控   总被引:1,自引:0,他引:1  
精原干细胞(spermatogonial stem cells,SSCs)是体内自然状态下惟一能将遗传信息传至子代的成体干细胞,它们能通过维持自我更新和分化的稳定从而保证雄性生命过程中精子发生的持续进行。了解SSCs自我更新和分化的调节机制有助于阐明精子发生机理,并为探究其他组织中成体干细胞增殖分化的调节机制提供依据。然而目前对于SSCs自我更新和分化的调控机制所知甚少。SSCs的更新与分化遵循特定模式,受以睾丸支持细胞为主要成分的微环境及各种内分泌因素如胶质细胞源神经营养因子(GDNF)、维生素、Ets转录因子ERM/Etv5等的调控。本文评述了SSCs更新与分化的模式以及上述因素对其更新、分化的调控,探讨了其中可能涉及的信号通路,以期为本领域及其他成体干细胞相关研究提供借鉴。  相似文献   

15.
Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit’s pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.  相似文献   

16.
精原干细胞是雄性体内可以永久维持的成体干细胞,它具有自我更新和分化的能力,保证了雄性个体生命过程中精子发生的持续进行,从而实现将遗传信息传递给下一代。精原千细胞不仅可在体外实现长期培养或诱导分化为各级生精细胞,并且可在特定条件下将其诱导去分化成为多能性干细胞。同样,这种多能性干细胞如同胚胎干细胞,可被诱导形成造血细胞、神经元细胞、肌细胞等多种类型细胞。鉴于其独具的生物学特性,精原干细胞在揭示精子的发生机制、治疗雄性不育和转基因动物等研究中具有重要价值。该文对精原干细胞在生物学特性、纯化培养、移植、体外诱导分化及其相关调控方面的各项研究进行了小结,综述了近年来的研究历程和最新研究成果。  相似文献   

17.
The production of testosterone occurs within the Leydig cells of the testes. When production fails at this level from either congenital, acquired, or systemic disorders,the result is primary hypogonadism. While numerous testosterone formulations have been developed, none are yet fully capable of replicating the physiological patterns of testosterone secretion. Multiple stem cell therapies to restore androgenic function of the testes are under investigation. Leydig cells derived from bone marrow, adipose tissue, umbilical cord, and the testes have shown promise for future therapy for primary hypogonadism. In particular, the discovery and utilization of a group of progenitor stem cells within the testes, known as stem Leydig cells(SLCs), has led not only to a better understanding of testicular development, but of treatment as well. When combining this with an understanding of the mechanisms that lead to Leydig cell dysfunction, researchers and physicians will be able to develop stem cell therapies that target the specific step in the steroidogenic process that is deficient. The current preclinical studies highlight the complex nature of regenerating this steroidogenic process and the problems remain unresolved. In summary, there appears to be two current directions for stem cell therapy in male primary hypogonadism. The first method involves differentiating adult Leydig cells from stem cells of various origins from bone marrow, adipose, or embryonic sources. The second method involves isolating, identifying, and transplanting stem Leydig cells into testicular tissue. Theoretically, in-vivo re-activation of SLCs in men with primary hypogonadism due to age would be another alternative method to treat hypogonadism while eliminating the need for transplantation.  相似文献   

18.
Although testosterone deficiency (TD) may be present in one out of five men 40 years or older, the factors responsible for TD remain largely unknown. Leydig stem cells (LSCs) differentiate into adult Leydig cells (ALC) and produce testosterone in the testes under the pulsatile control of luteinizing hormone (LH) from the pituitary gland. However, recent studies have suggested that the testicular microenvironment (TME), which is comprised of Sertoli and peritubular myoid cells (PMC), plays an instrumental role in LSC differentiation and testosterone production under the regulation of the desert hedgehog signaling pathway (DHH). It was hypothesized that the TME releases paracrine factors to modulate LSC differentiation. For this purpose, cells (Sertoli, PMCs, LSCs, and ALCs) were extracted from men undergoing testis biopsies for sperm retrieval and were evaluated for the paracrine factors in the presence or absence of the TME (Sertoli and PMC). The results demonstrated that TME secretes leptin, which induces LSC differentiation and increases testosterone production. Leptin’s effects on LSC differentiation and testosterone production, however, are inversely concentration-dependent: positive at low doses and negative at higher doses. Mechanistically, leptin binds to the leptin receptor on LSCs and induces DHH signaling to modulate LSC differentiation. Leptin-DHH regulation functions unidirectionally insofar as DHH gain or loss of function has no effect on leptin levels. Taken together, these findings identify leptin as a key paracrine factor released by cells within the TME that modulates LSC differentiation and testosterone release from mature Leydig cells, a finding with important clinical implications for TD.Subject terms: Stem-cell differentiation, Translational research  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号