首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Roles of jasmonate and ethylene signalling and their interaction in yeast elicitor-induced biosynthesis of a phytoalexin, beta-thujaplicin, were investigated in Cupressus lusitanica cell cultures. Yeast elicitor, methyl jasmonate, and ethylene all induce the production of beta-thujaplicin. Elicitor also stimulates the biosynthesis of jasmonate and ethylene before the induction of beta-thujaplicin accumulation. The elicitor-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of jasmonate and ethylene biosynthesis or signal transduction. These results indicate that the jasmonate and ethylene signalling pathways are integral parts of the elicitor signal transduction leading to beta-thujaplicin accumulation. Methyl jasmonate treatment can induce ethylene production, whereas ethylene does not induce jasmonate biosynthesis; methyl jasmonate-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of ethylene biosynthesis and signalling, while blocking jasmonate biosynthesis inhibits almost all ethylene-induced beta-thujaplicin accumulation. These results indicate that the ethylene and jasmonate pathways interact in mediating beta-thujaplicin production, with the jasmonate pathway working as a main control and the ethylene pathway as a fine modulator for beta-thujaplicin accumulation. Both the ethylene and jasmonate signalling pathways can be regulated upstream by Ca(2+). Ca(2+) influx negatively regulates ethylene production, and differentially regulates elicitor- or methyl jasmonate-stimulated ethylene production.  相似文献   

3.
The biosynthesis of a phytoalexin, beta-thujaplicin, in Cupressus lusitanica cell cultures can be stimulated by a yeast elicitor, H(2)O(2), or methyl jasmonate. Lipoxygenase activity was also stimulated by these treatments, suggesting that the oxidative burst and jasmonate pathway may mediate the elicitor-induced accumulation of beta-thujaplicin. The elicitor signalling pathway involved in beta-thujaplicin induction was further investigated using pharmacological and biochemical approaches. Treatment of the cells with calcium ionophore A23187 alone stimulated the production of beta-thujaplicin. A23187 also enhanced the elicitor-induced production of beta-thujaplicin. EGTA, LaCl(3), and verapamil pretreatments partially blocked A23187- or yeast elicitor-induced accumulation of beta-thujaplicin. These results suggest that Ca(2+) influx is required for elicitor-induced production of beta-thujaplicin. Treatment of cell cultures with mastoparan, melittin or cholera toxin alone or in combination with the elicitor stimulated the production of beta-thujaplicin or enhanced the elicitor-induced production of beta-thujaplicin. The G-protein inhibitor suramin inhibited the elicitor-induced production of beta-thujaplicin, suggesting that receptor-coupled G-proteins are likely to be involved in the elicitor-induced biosynthesis of beta-thujaplicin. Indeed, both GTP-binding activity and GTPase activity of the plasma membrane were stimulated by elicitor, and suramin and cholera toxin affected G-protein activities. In addition, all inhibitors of G-proteins and Ca(2+) flux suppressed elicitor-induced increases in lipoxygenase activity whereas activators of G-proteins and the Ca(2+) signalling pathway increased lipoxygenase activity. These observations suggest that Ca(2+) and G-proteins may mediate elicitor signals to the jasmonate pathway, and the jasmonate signalling pathway may then lead to the production of beta-thujaplicin.  相似文献   

4.
Oxidative stress is a common physiological stress that often challenges plants. Reactive oxygen species (ROS) are major factors in oxidative stress that significantly affect plant cell growth and secondary metabolism. Here we used beta-thujaplicin production by Cupressus lusitanica cell culture as an example to demonstrate the common occurrence of oxidative stress in cultivated plant cells and its effect on multiple aspects of cell culture process. C. lusitanica cells cultivated under Fe(2+) stress generate a significant level of ROS, and oxidative stress also occurs at late stages of C. lusitanica cell cultures under normal conditions. ROS production inhibited cell growth, induced lipid peroxidation and cell death, and enhanced ethylene and beta-thujaplicin production. It is demonstrated that Fe(2+) stress enhances ROS production via the Fenton reaction and promotes beta-thujaplicin production via ROS-induced lipid peroxidation that may activate cyclic oxylipin and ethylene pathways. Results further indicate that H(2)O(2) is a positive signal for beta-thujaplicin production, whereas superoxide anion radical (O(2) (- )) negatively affects beta-thujaplicin induction and strongly induces cell death. The study suggests that evaluating the oxidative stress and plant responses in a cell culture process is very necessary and important for understanding biochemical processes and for gaining the maximal productivity of target secondary metabolites.  相似文献   

5.
Yamada J  Fujita K  Sakai K 《Phytochemistry》2002,60(5):447-450
Suspension cell cultures of Cupressus lusitanica produce beta-thujaplicin, a tropolone found mostly in Cupressaceae heartwood. The factors controlling beta-thujaplicin accumulation in this cell culture system were investigated. Initial cell density of the cultures did not affect beta-thujaplicin levels, though initial addition of beta-thujaplicin suppressed its de novo production. When beta-thujaplicin accumulation reached a certain level (ca. 40 mg/l) in the medium, the cultures seemed to cease beta-thujaplicin production. However, beta-thujaplicin productivity was restored when the beta-thujaplicin-containing medium was exchanged for fresh medium; the formation of 2-methoxy-6-(methylethyl)cyclohepta-2,4,6-trien-1-one, an isomer of methylated beta-thujaplicin, in medium was also observed. These results suggest that beta-thujaplicin synthesis was regulated by product feedback mechanism in this cell line, and that excess accumulation of beta-thujaplicin is relieved by conversion of beta-thujaplicin to its methyl ether.  相似文献   

6.
Production of a novel antimicrobial tropolone, beta-thujaplicin, in Cupressus lusitanica suspension cultures was studied by using a variety of chemicals and fungal elicitors. Sodium alginate, chitin, and methyl jasmonate resulted in 2-, 2.5-, and 3-fold higher beta-thujaplicin production, respectively, than in the control. Significantly improved beta-thujaplicin production (187 mg l(-1)) was obtained using a high cell density (180-200 g l(-1)) and fungal elicitor treatment [10 mg (g fresh cells)(-1)] in a production medium with a high ferrous ion concentration (0.3 mM). This improved volumetric productivity was 3- to 4-fold higher than obtained under standard conditions. A synergistic effect of fungal elicitor and ferrous ion on beta-thujaplicin production was also suggested by our study. Plant cell culture technology is a promising alternative for producing a large variety of secondary metabolites that are widely used as food additives, pharmaceuticals, and dairy products (Verpoorte et al. 1999). Thus, beta-thujaplicin production by plant cell cultures was developed with the goal of commercial application (Berlin and Witte 1988; Itose and Sakai 1997; Ono et al. 1998). However, the production of beta-thujaplicin by plant cell cultures is still not competitive for use in industrial applications. In this study, we assessed the effects of methyl jasmonate, alginate, chitin, and fungal elicitor on beta-thujaplicin production; we obtained a significantly elevated beta-thujaplicin production by using an improved culture strategy.  相似文献   

7.
Beta-thujaplicin Is a natural troponoid with strong antifungal, antiviral, and anticancer activities. Beta-thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. Superoxide anion radical (O2*-) induced cell death and inhibited beta-thujaplicin accumulation, whereas hydrogen peroxide (H2O2) induced beta-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2*- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced beta-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. Interaction among NO, H2O2, and O2*- shows that NO production and H2O2 production are interdependent, but NO and O2*- accumulation were negatively related because of coconsumption of NO and O2*-. NO- and O2*- -induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2*- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.  相似文献   

8.
In course of a study of fatty acid synthetase in higher plants, non-green cell suspension cultures of Glycine max (soybean) served as model tissues. For the first time, a fatty acid synthesizing system was characterized in cell cultures of higher plants and was found to be solely located in proplastids of the cells. Optimum activity of the fatty acid synthesizing system in proplastids was observed between pH 8.0 and 8.2; with [1-14C]acetate as substrate, cofactors required were CoA, ATP, Mn2+, Mg2+, HCO3-, NADH and NADPH. The system was more sensitive towards NADH than NADHP. [1-14C]Acetate,[2-14C]-malonate and [3-14C]pyruvate served as precursors for fatty acids, indicating the presence of pyruvate dehydrogenase activity in proplastids. In disrupted proplastids, [2-14C]malonylCoA was a better precursor than [1-14C]acetylCoA. After incubation of proplastids with [2-14C]malonate, a small shift, from palmitic acid to higher homologs, of label incorporated was observed, as compared to incorporation of label from [1-14C]acetate and [3-14C]pyruvate. Under the conditions of the experiment, only small amounts of polyunsaturated fatty acids, the main fatty acid components of this organelle, were synthesized. In respect to fatty acid synthesis, the non-green cell suspension culture resembles photosynthetic leaf tissue.  相似文献   

9.
Anaerobic degradation of natural monoterpenes by microorganisms was evaluated by using Pseudomonas citronellolis DSM 50332 and enrichment cultures containing nitrate as an electron acceptor. P. citronellolis grew anaerobically on 3,7-dimethyl-1-octanol and citronellol but not on geraniol, nerol, and alicyclic monoterpenes. In contrast, several a-, mono-, and bicyclic monoterpenes supported microbial growth and denitrification in enrichment cultures. We found that consumption of linalool, menthol, menth-1-ene, alpha-phellandrene, limonene, 2-carene, alpha-pinene, and fenchone in enrichment cultures depended on the presence of living microorganisms and nitrate. In these experiments, the ratios of number of electrons derived from complete substrate oxidation to number of electrons derived from nitrate reduction ranged from 1.2:1 to 2.9:1. Microbial degradation was accompanied by the formation of small traces of monoterpenes, which were characterized by gas chromatography-mass spectroscopy. The formation of geraniol and geranial from linalool suggested that a 3,1-hydroxyl-delta 1-delta 2-mutase reaction initiates linalool degradation. Seven strains of motile, oval to rod-shaped, facultatively denitrifying bacteria were isolated on agar bottle plates by using linalool, menthol, menth-1-ene, alpha-phellandrene, 2-carene, eucalyptol, and alpha-pinene as sole carbon and energy sources.  相似文献   

10.
代谢调节剂对紫杉醇和Taxuyunnanine C生物合成的调控作用   总被引:2,自引:0,他引:2  
研究了诱导子、前体和抑制剂对东北红豆杉生产紫杉醇和taxuyunnanine C的影响。结果表明,诱导子在第12d添加,前体和抑制剂在第15d添加能有效地提高紫杉醇和taxuyunnanine C的含量。水杨酸与氯化氯胆碱的交互作用对紫杉醇的合成有很大影响,水杨酸与赤霉酸的交互作用对taxuyunnanine C的合成有很大影响。  相似文献   

11.
东北红豆杉细胞培养生产紫杉醇的调控研究   总被引:7,自引:0,他引:7  
研究了诱导子、前体及抑制剂的协调作用对东北红平杉生产紫杉醇的影响。结果表明,向培养基中加入80mg/L水到、80mg/L茉莉酸甲酯、0.5mmol/L乙酸钠、2mmol/L苯丙氨酸、0.5mmol/L丝氨酸、0.1mmol/L甘氨酸、10mg/L肉桂酸、0.5mmol/L苯甲酸钠、5mmol/L丙酮酸钠、10mg/L氯化氯胆碱、和1mg/L赤霉酸可使紫杉醇含量提高368.65%。并且证明交互作用对紫杉醇合成有显著作用。  相似文献   

12.
The pattern of oxidative metabolism of pyruvate may be assessed by comparing the steady-state 14CO2 production from four isotopes in identical samples. The assay requires measuring the ratios of steady-state 14CO2 production from two isotope pairs, [2-14C]pyruvate:[3-14C]pyruvate and [1-14C]acetate:[2-14C]acetate. These ratios are defined as the "pyruvate 14CO2 ratio" and the "acetate 14CO2 ratio," respectively. If pyruvate is metabolized exclusively via pyruvate dehydrogenase (PDH), the two ratios will be identical. Alternatively, if any pyruvate enters the tricarboxylic acid (TCA) cycle via pyruvate carboxylation (PC), the pyruvate 14CO2 ratio will be less than the acetate 14CO2 ratio. If pyruvate enters the TCA cycle only through PC (with oxaloacetate and fumarate in equilibrium) the pyruvate 14CO2 ratio will approach a value of 1.0. An equation is presented for the quantitative evaluation of pyruvate oxidation by these two pathways. We have used this method to detect relative changes in the pattern of pyruvate metabolism in rat liver mitochondria produced by exposure to 1 mM octanoyl carnitine, a compound known to alter the PC:PDH activity ratio. The major advantages of the method are (i) that it provides a sensitive method for detecting pyruvate carboxylation at physiological pyruvate concentrations and (ii) that it provides a method for distinguishing between effects on pyruvate transport and effects on pyruvate oxidation.  相似文献   

13.
《Plant science》1987,48(3):195-201
The effects of exogenous monoterpenes on cellular viability and growth of fine suspension cultures of Pelargonium fragrans have been investigated in order to establish whether product toxicity might play a role in determining the level of monoterpene accumulation in morphologically undifferentiated plant cell cultures. Producing lines of P. fragrans accumulate monoterpenes in the medium at concentrations which we now demonstrate to be toxic to fine suspension cultures. The problems associated with end-product toxicity must be solved before the potential of plant tissue culture techniques for the commercial production of monoterpenes be fully realised.  相似文献   

14.
Diacetyl and Acetoin Production by Lactobacillus casei   总被引:5,自引:3,他引:2       下载免费PDF全文
Agitation of broth cultures of Lactobacillus casei retarded cellular dry weight accumulation but enhanced production of both diacetyl and acetoin. Addition of pyruvate overcame this retardation, but addition of sulfhydryl-protecting reagents did not. Both pyruvate and citrate enhanced accumulated dry weight of L. casei incubated without agitation, but only pyruvate increased diacetyl accumulation. Both actively dividing cells and cells suspended in buffer converted pyruvate to diacetyl and acetoin. Maximum production of diacetyl and acetoin occurred during the late logarithmic or early stationary phases. Cells isolated from pyruvate- or citrate-containing cultures showed the greatest ability to convert pyruvate to diacetyl and acetoin. The optimum pH for diacetyl and acetoin formation by whole cells was in the range of 4.5 to 5.5. The presence of citrate or acetate enhanced diacetyl and acetoin formation by L. casei cells in buffer suspension.  相似文献   

15.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct observation of acetate and pyruvate metabolism in suspension cultures of Zea mays (var Black Mexican Sweet). Growth of the corn cells in the presence of 2 millimolar [2-13C]acetate resulted in a rapid uptake of the substrate from the medium and initial labeling (0-4 hours) of primarily the intracellular glutamate and malate pools. Further metabolism of these intermediates resulted in labeling of glutamine, aspartate, and alanine. With [1-13C]acetate as the substrate very little incorporation into intermediary metabolites was observed in the 13C NMR spectra due to loss of the label as 13CO2. Uptake of [3-13C]pyruvate by the cells was considerably slower than with [2-13C]acetate; however, the labelling patterns were similar with the exception of increased [3-13C] alanine generation with pyruvate as the substrate. Growth of the cells for up to 96 hours with 2 millimolar [3-13C]pyruvate ultimately resulted in labeling of valine, leucine, isoleucine, threonine, and the polyamine putrescine.  相似文献   

16.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

17.
The accumulation and biosynthesis of sterols and fungal elicitor-inducible sesquiterpenoids by tobacco (Nicotiana tabacum) cell suspension cultures were examined as a function of a 10 day culture cycle. Sterols accumulated concomitantly with fresh weight gain. The rate of sterol biosynthesis, measured as the incorporation rate of [14C]acetate and [3H]mevalonate, was maximal when the cultures entered into their rapid phase of growth. Changes in squalene synthetase enzyme activity correlated more closely with thein vivo synthesis rate and accumulation of sterols than 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) enzyme activity. Cell cultures entering into the rapid phase of growth also responded maximally to fungal elicitor as measured by the production of capsidiol, an extracellular sesquiterpenoid. However, the rate of sesquiterpenoid biosynthesis, measured as the incorporation rate of [14C]acetate and [3H]mevalonate, could not be correlated with elicitor-inducible HMGR or sesquiterpene cyclase enzyme activities, nor elicitor-suppressible squalene synthetase enzyme activity.Abbreviations FPP farnesyl diphosphate - HMGR 3-hydroxy-3-methylglutaryl coenzyme A reductase  相似文献   

18.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

19.
Mono- and diterpenoids are of great industrial and medical value as specialty chemicals and pharmaceuticals. Production of these compounds in microbial hosts, such as Escherichia coli, can be limited by intracellular levels of the polyprenyl diphosphate precursors, geranyl diphosphate (GPP), and geranylgeranyl diphosphate (GGPP). To alleviate this limitation, we constructed synthetic operons that express three key enzymes for biosynthesis of these precursors: (1). DXS,1-deoxy-d-xylulose-5-phosphate synthase; (2). IPPHp, IPP isomerase from Haematococcus pluvialis; and (3). one of two variants of IspA, FPP synthase that produces either GPP or GGPP. The reporter plasmids pAC-LYC and pACYC-IB, which encode enzymes that convert either FPP or GGPP, respectively, to the pigment lycopene, were used to demonstrate that at full induction, the operon encoding the wild-type FPP synthase and mutant GGPP synthase produced similar levels of lycopene. To synthesize di- or monoterpenes in E. coli using the GGPP and GPP encoding operons either a diterpene cyclase [casbene cyclase (Ricinus communis L) and ent-kaurene cyclase (Phaeosphaeria sp. L487)] or a monoterpene cyclase [3-carene cyclase (Picea abies)] was coexpressed with their respective precursor production operon. Analysis of culture extracts or headspace by gas chromatography-mass spectrometry confirmed the in vivo production of the diterpenes casbene, kaur-15-ene, and kaur-16-ene and the monoterpenes alpha-pinene, myrcene, sabinene, 3-carene, alpha-terpinene, limonene, beta-phellandrene, alpha-terpinene, and terpinolene. Construction and functional expression of GGPP and GPP operons provides an in vivo precursor platform host for the future engineering of di- and monoterpene cyclases and the overproduction of terpenes in bacteria.  相似文献   

20.
Oats produce a group of secondary metabolites termed avenanthramides (avn). These compounds are biosynthesized through the action of the enzyme hydroxycinnamoyl CoA: hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) which catalyzes the condensation of one of several cinnamate CoA thioesters with the amine functionality of anthranilic acid, 4-hydroxy- or 5-hydroxy-anthranilic acid. In oat leaf tissue the biosynthesis of avenanthramides appears to result from elicitation by fungal infection. Here we demonstrate the biosynthesis of several avenanthramides in suspension cultures of oat apical meristem callus tissue. This phenomenon appears as a generalized pathogen response, evidenced by the production of PR-1 mRNA, in response to elicitation with chitin (poly-N-acetyl glucosamine). The suspension cultures also produce relatively large quantities of avnA and G in response to chitin elicitation. Under certain culture conditions avnB and C are also produced as well as three additional metabolites tentatively identified as avnH, O and R. These findings portend the utility of oat suspension culture as a tool for more detailed investigation of the mechanisms triggering their biosynthesis as well as the factors dictating the particular types of avenanthramides biosynthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号