共查询到20条相似文献,搜索用时 15 毫秒
1.
The method of gel electrophoresis was used to study DNA-protein cross-link formation in fragmentized chromatin gamma-irradiated in water solutions (0.03%). By introducing changes into irradiation conditions (for instance, the use of different gases saturating the solution and the administration of radical acceptors) and by the subsequent electrophoretic analysis (treatment of the exposed chromatin by dissociating mixtures and enzymes) the authors showed a covalent nature of the cross-links in a radiation-induced DNA-protein complex and found the value of G (a cross-link) to be 0.02. 相似文献
2.
Raman spectroscopy of DNA modified by intrastrand cross-links of antitumor cisplatin 总被引:1,自引:0,他引:1
Raman spectroscopy was employed to characterize the perturbations to DNA conformation induced in DNA by two different intrastrand adducts of antitumor cis-diamminedichloroplatinum(II) (cisplatin), namely by its 1,2-GG or 1,3-GTG intrastrand cross-links. We examined short deoxyribooligonucleotide duplexes containing single, site-specific cross-link by Raman spectroscopy and assigned the spectral alterations to conformational changes induced in DNA by 1,2-GG or 1,3-GTG intrastrand CLs determined earlier by other biochemical and biophysical methods. The results confirmed significant perturbations to the B-form DNA backbone due to the intrastrand lesions and that several nucleotides changed their conformation from C2'-endo to C3'-endo. Evidence for a partial transition from B- to A-form was found in several regions of the Raman spectra as well. The spectra also confirmed the different and more extensive distortion induced in B-DNA by 1,3-GTG in comparison with 1,2-GG intrastrand CLs, consistent with their already known high resolution structures. The results of the present work demonstrate that Raman spectroscopy represents a suitable tool to provide insights into structural factors involved in the mechanisms underlying antitumor effects of platinum drugs. 相似文献
3.
4.
E M Miul' V M Zhil'tsova V I Biniukov 《Izvestiia Akademii nauk SSSR. Seriia biologicheskaia》1989,(5):766-769
Hindered phenols, quinones, and SH-compounds have been studied as possible protectors and sensitizers of DNA-protein cross-linking in chromatin. Efficacy of cross-linking was estimated by the quantity of protein linked to DNA after UV irradiation at 254 um in the presence of chemical agents. Phenols and quinones exert protective influence on cross-linking whereas DNA-protein cross-links are sensibilized by cysteine hydrochloride. 相似文献
5.
DNA-protein cross-links are generated by both endogenous and exogenous DNA damaging agents, as intermediates during normal DNA metabolism, and during abortive base excision repair. Cross-links are relatively common lesions that are lethal when they block progression of DNA polymerases. DNA-protein cross-links may be broadly categorized into four groups by the DNA and protein chemistries near the cross-link and by the source of the cross-link: DNA-protein cross-links may be found (1) in nicked DNA at the 3' end of one strand (topo I), (2) in nicked DNA at the 5' end of one strand (pol beta), (3) at the 5' ends of both strands adjacent to nicks in close proximity (topo II; Spo 11), and (4) in one strand of duplex DNA (UV irradiation; bifunctional carcinogens and chemotherapeutic agents). Repair mechanisms are reasonably well-defined for groups 1 and 3, and suggested for groups 2 and 4. Our work is focused on the recognition and removal of DNA-protein cross-links in duplex DNA (group 4). 相似文献
6.
The carcinogenic activity of crystalline NiS has been attributed to phagocytosis and intracellular dissolution of the particles to yield Ni2+ which is thought to enter the nucleus and damage DNA. In this study the extent and type of DNA damage in Chinese hamster ovary CHO cells treated with various nickel compounds was assessed by alkaline elution. Both insoluble (crystalline NiS) and soluble (NiCl2) nickel compounds induced single strand breaks and DNA protein cross-links. The single strand breaks were repaired relatively quickly but the DNA-protein cross-links were present and still accumulating 24 h after exposure to nickel. Single strand breakage occurred at both non-cytotoxic and cytotoxic concentrations of nickel, however, DNA-protein cross-linking was absent when cells were exposed to toxic nickel levels. The concentration of nickel that induced DNA-protein cross-linking correlated with those metal concentrations that reversibly inhibited cellular replication. 相似文献
7.
E M Mil' V I Biniukov V M Zhil'tsova L G Stoliarova Iu V Kuznetsov 《Izvestiia Akademii nauk SSSR. Seriia biologicheskaia》1991,(3):458-462
Effect of benzimidazole-derivatives on the DNA-protein binding formation was studied after UV-radiation of chromatin. These derivatives were shown to protect chromatin from UV-induced DNA-protein binding formation. Structural analog contained two aminomethyl residuals sensibilized additional binding formation in chromatin. Results suggested, that benzimidazole interacted with DNA, while aminomethyl groups interacted with protein and sensibilized binding of DNA with histone H1. 相似文献
8.
Oxidized abasic sites are a major form of DNA damage induced by free radical attack and deoxyribose oxidation. 2-Deoxyribonolactone (dL) is a C1'-oxidized abasic site implicated in DNA strand breakage, mutagenesis, and formation of covalent DNA-protein cross-links (DPCs) with repair enzymes such as DNA polymerase beta (polbeta). We show here that mammalian cell-free extracts incubated with Ape1-incised dL substrates under non-repair conditions give rise to DPCs, with a major species dependent on the presence of polbeta. DPC formation was much less under repair than non-repair conditions, with extracts of either polbeta-proficient or -deficient cells. Partial base excision DNA repair (BER) reconstituted with purified enzymes demonstrated that Flap endonuclease 1 (FEN1) efficiently excises a displaced oligonucleotide containing a 5'-terminal dL residue, as would be produced during long-patch (multinucleotide) BER. Simultaneous monitoring of dL repair and dL-mediated DPC formation demonstrated that removal of the dL residue through the combined action of strand-displacement DNA synthesis by polbeta and excision by FEN1 markedly diminished DPC formation with the polymerase. Analysis of the patch size distribution associated with DNA repair synthesis in cell-free extracts showed that the processing of dL residues is associated with the synthesis of >or=2 nucleotides, compared with predominantly single nucleotide replacement for regular abasic sites. Our observations reveal a cellular repair process for dL lesions that avoids formation of DPCs that would threaten the integrity of DNA and perhaps cell viability. 相似文献
9.
Cis-diamminedichloroplatinum(II) (cis-DDP) is one of the most often used anticancer drugs. It is generally accepted that the antitumor activity of the drug results from its interactions with DNA. Trans-diamminedichloroplatinum(II) (trans-DDP) also binds to DNA effectively, but is clinically ineffective. In the present work the lymphocyte nuclear proteins that participate in DNA-protein cross-links induced by cis- and trans-DDP are investigated. In lymphocytes which are incubated without platinum compounds there are DNA-binding proteins in the range of 45-71 kDa. It is shown that additional proteins of 28, 30, 34.5, 45 and 120 kDa are cross-linked with DNA in lymphocytes after 2-h incubation with cis-DDP at concentrations of 0.1 and 0.5 mM. Trans-DDP does not bind additional proteins to DNA after the same incubation time. Electrophoretic analysis shows that trans-DDP binds much more of the same nuclear proteins to DNA than cis-DDP after 12-h incubation. In this study a test for the identification of 34.5 kDa protein is also undertaken. This protein appears in the samples obtained after 12-h incubation of lymphocytes with cis- and trans-DDP at 0.5 and 1 mM, especially. The protein of 34.5 kDa from cross-links induced by 1 mM trans-DDP is recognized by antibodies against the protein of the same molecular weight from the nuclear matrix of the lymphocytes. The results obtained here are discussed in relation to the biological activity of diamminedichloroplatinum isomers. 相似文献
10.
I O Baskaeva 《Radiobiologiia》1992,32(5):673-684
The present paper deals with the damages that are induced by numerous agents, such as gamma-radiation, UV-radiation, visible fluorescent light radiation, and a wide range of chemical agents, and lead to the formation of DNA-protein cross-links. This is the most unknown and obscure type of damage to cells. It is, however, well known that these damages are reparable. 相似文献
11.
Free radicals-mediated induction of oxidized DNA bases and DNA-protein cross-links by nickel chloride 总被引:1,自引:0,他引:1
Using the comet assay, we showed that nickel chloride at 250-1000 microM induced DNA damage in human lymphocytes, measured as the change in comet tail moment, which increased with nickel concentration up to 500 microM and then decreased. Observed increase might follow from the induction of strand breaks or/and alkali-labile sites (ALS) by nickel, whereas decrease from its induction of DNA-DNA and/or DNA-protein cross-links. Proteinase K caused an increase in the tail moment, suggesting that nickel chloride at 1000 microM might cross-link DNA with nuclear proteins. Lymphocytes exposed to NiCl(2) and treated with enzymes recognizing oxidized and alkylated bases: endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), displayed greater extent of DNA damage than those not treated with these enzymes, indicating the induction of oxidized and alkylated bases by nickel. The incubation of lymphocytes with spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by nickel. The pre-treatment with Vitamin C at 10 microM and Vitamin E at 25 microM decreased the tail moment of the cells exposed to NiCl(2) at the concentrations of the metal causing strand breaks or/and ALS. The results obtained suggest that free radicals may be involved in the formation of strand breaks or/and ALS in DNA as well as DNA-protein cross-links induced by NiCl(2). Nickel chloride can also alkylate DNA bases. Our results support thesis on multiple, free radicals-based genotoxicity pathways of nickel. 相似文献
12.
Baker DJ Wuenschell G Xia L Termini J Bates SE Riggs AD O'Connor TR 《The Journal of biological chemistry》2007,282(31):22592-22604
DNA-protein cross-links (DPCs) present a formidable obstacle to cellular processes because they are "superbulky" compared with the majority of chemical adducts. Elimination of DPCs is critical for cell survival because their persistence can lead to cell death or halt cell cycle progression by impeding DNA and RNA synthesis. To study DPC repair, we have used DNA methyltransferases to generate unique DPC adducts in oligodeoxyribonucleotides or plasmids to monitor both in vitro excision and in vivo repair. We show that HhaI DNA methyltransferase covalently bound to an oligodeoxyribonucleotide is not efficiently excised by using mammalian cell-free extracts, but protease digestion of the full-length HhaI DNA methyltransferase-DPC yields a substrate that is efficiently removed by a process similar to nucleotide excision repair (NER). To examine the repair of that unique DPC, we have developed two plasmid-based in vivo assays for DPC repair. One assay shows that in nontranscribed regions, DPC repair is greater than 60% in 6 h. The other assay based on host cell reactivation using a green fluorescent protein demonstrates that DPCs in transcribed genes are also repaired. Using Xpg-deficient cells (NER-defective) with the in vivo host cell reactivation assay and a unique DPC indicates that NER has a role in the repair of this adduct. We also demonstrate a role for the 26 S proteasome in DPC repair. These data are consistent with a model for repair in which the polypeptide chain of a DPC is first reduced by proteolysis prior to NER. 相似文献
13.
DNA-protein cross-links in different organs of mice induced by the combined action of zinc and gamma-irradiation 总被引:1,自引:0,他引:1
Fractional whole-body gamma-irradiation of mice at total doses of 0. 5-1.5 Gy induces increased DNA-protein cross-links (DPCs) in thymus, spleen, and brain, whereas in liver no DPCs are detected. Chronic administration of zinc ions in drinking water at concentration 10 mg/liter for 20-30 days increased DPCs in thymus, spleen, brain, and liver of mice. The combined action of zinc ions and gamma-radiation produced a significantly lower amount of DPCs than was induced by the separate action of these agents. 相似文献
14.
DNA-protein cross-links and sister chromatid exchanges induced by dimethylarsinic acid in human fibroblasts cells 总被引:1,自引:0,他引:1
Biotransformation of inorganic arsenic to form both methylarsinic acid (MA) and dimethylarsinic acid (DMA) has traditionally been considered as a mechanism to facilitate the detoxification and excretion of arsenic. However, the methylation of inorganic arsenic as a detoxification mechanism has been questioned due to recent studies revealing an important role of organic arsenic in the induction of genetic damage. In a previous report a reduction of DNA migration after treatment of cells with DMA was described. In order to further evaluate the possible induction of protein-DNA adducts, an experiment was performed taking into account other parameters and modifications of the standard alkaline comet assay. In addition, the results obtained with the comet assay were compared with those obtained by analyzing the induction of sister chromatid exchanges (SCEs). SCE frequencies were significantly increased in treated cells in relation to controls (p<0.001). Furthermore, in the standard alkaline comet assay, as well as in the control assay for proteinase K treatment, a significant dose-dependent reduction in tail moment was observed. Nevertheless, the post-treatment with proteinase K induced the release of proteins joined to the DNA and consequently, a dose-dependent increment in DNA migration was observed (p<0.001). These results suggest that DNA-protein cross-links may be an important genotoxic effect induced by dimethylarsinic acid in human MRC-5 cells. 相似文献
15.
Gene-specific formation and repair of cisplatin intrastrand adducts and interstrand cross-links in Chinese hamster ovary cells 总被引:11,自引:0,他引:11
J C Jones W P Zhen E Reed R J Parker A Sancar V A Bohr 《The Journal of biological chemistry》1991,266(11):7101-7107
We have used three methods to study the formation and repair of intrastrand adducts and interstrand cross-links in the DNA of Chinese hamster ovary cells induced by the anticancer drug cis-diamminedichloroplatinum II (cisplatin). Using atomic absorption spectroscopy, we found that 21% of the total genomic cisplatin adducts were removed at 8 h and 42% at 24 h. We used ABC excinuclease digestion, coupled with out previously reported methodology to quantify DNA in specific genomic regions. These adducts were removed faster in the transcribed dihydrofolate reductase and c-myc genes compared to a noncoding fragment, a region containing the little or nontranscribed c-fos oncogene, and to the overall genome. Interstrand cross-links in specific sequences were quantified by Southern hybridization of denatured-renatured DNA separated on a neutral gel. We found that cross-links were removed more efficiently from the gene regions than intrastrand adducts and, at high levels of cross-linking, removal was similar from transcribed and from nontranscribed regions. 相似文献
16.
T S Wang T Y Hsu C H Chung A S Wang D T Bau K Y Jan 《Free radical biology & medicine》2001,31(3):321-330
Arsenic is generally recognized as a nonmutagenic carcinogen because sodium arsenite induces DNA damage only at very high concentrations. In this study we demonstrate that arsenite concentrations above 0.25 microM induce DNA strand breaks in both human leukemia cells and Chinese hamster ovary cells. Therefore, DNA damage may be involved in arsenic-induced carcinogenesis. Formamidopyrimidine-DNA glycosylase and proteinase K greatly increased DNA strand breaks in arsenite-treated cells, providing evidence that a large portion of arsenite-induced DNA strand breaks come from excision of oxidative DNA adducts and DNA-protein cross-links. Because DNA strand breaks appear only temporarily during excision repair, the level of detectable DNA strand breaks will be low at any given time point. For this reason many previous studies have only detected low levels of DNA strand breaks. We also show that catalase, and inhibitors of calcium, nitric oxide synthase, superoxide dismutase, and myeloperoxidase, could modulate arsenite-induced DNA damage. We conclude that arsenite induces DNA adducts through calcium-mediated production of peroxynitrite, hypochlorous acid, and hydroxyl radicals. 相似文献
17.
S M Chiu N M Sokany L R Friedman N L Oleinick 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1984,46(6):681-690
The yield and repairability of DNA-protein cross-links have been compared after gamma- or U.V.-irradiation of Chinese hamster V79-379 lung fibroblasts. Using a filter-binding assay, cross-linked DNA can be specifically isolated after doses between 10 and 100 Gy of gamma-radiation and fluences between 20 and 300 J/m2 of U.V.-radiation. After ionizing radiation, the majority of DNA cross-linked to protein is released with biphasic kinetics, requiring 1 h for removal of 50 per cent of the cross-linked DNA and 24 h for 90 per cent release. In these cells, U.V.-induced cross-linked DNA is not removed; on the contrary, the yield of apparent DNA-protein complexes increases during postirradiation incubation. Prior gamma-irradiation, to initiate the associated repair system, does not stimulate release of U.V.-induced cross-linked DNA. Inhibition of protein synthesis by cycloheximide affects neither the removal of gamma-ray-induced cross-linked DNA nor the increase in U.V.-induced cross-linked DNA. 3-Aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, slows the second phase of release after gamma-irradiation as well as the increase in apparent cross-links after U.V.-irradiation. Thus, even though both types of DNA-protein cross-links can be detected by the same assay, their structures or other factors must be substantially different, since the repair system for one type does not recognize the other. 相似文献
18.
Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions 总被引:3,自引:0,他引:3
Steven A. Altman Tomasz H. Zastawny Lisa Randers-Eichhorn Marco A. Cacciuttolo Steven A. Akman Miral Dizdaroglu Govind Rao 《Free radical biology & medicine》1995,19(6):897-902
Formation of DNA-protein crosslinks (DPCs) in mammalian cells upon treatment with iron or copper ions was investigated. Cultured murine hybridoma cells were treated with Fe(II) or Cu(II) ions by addition to the culture medium at various concentrations. Subsequently, chromatin samples were isolated from treated and control cells. Analyses of chromatin samples by gas chromatography/mass spectrometry after hydrolysis and derivatization revealed a significant increase over the background amount of 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)-methyl]-
-tyrosine (Thy-Tyr crosslink) in cells treated with Fe(II) ions in the concentration range of 0.01 to 1 mM. In contrast, Cu(II) ions at the same concentrations did not produce this DPC in cells. No DNA base damage was observed in cells treated with Cu(II) ions, either. Preincubation of cells with ascorbic acid or coincubation with dimethyl sulfoxide did not significantly alleviate the Fe(II) ion-mediated formation of DPCs. In addition, a modified fluorometric analysis of DNA unwinding assay was used to detect DPCs formed in cells. Fe(II) ions caused significant formation of DPCs, but Cu(II) ions did not. The nature of the Fe(II)-mediated DPCs suggests the involvement of the hydroxyl radical in their formation. The Thy-Tyr crosslink may contribute to pathological processes associated with free radical reactions. 相似文献
19.
1,3-Butadiene (BD) is an air pollutant and a known carcinogen. 1,2,3,4-Diepoxybutane (DEB), one of the major in vivo metabolites of BD, is considered the ultimate culprit of BD mutagenicity/carcinogenicity. DEB is a bifunctional alkylating agent, being capable of inducing the formation of monoalkylated DNA adducts and DNA cross-links, including DNA-DNA and DNA-protein cross-links (DPC). In the present study, we investigated DEB-caused DNA cross-links and breaks in human hepatocyte L02 cells using comet assay. With alkaline comet assay, it was observed that DNA migration increased with the increase of DEB concentration at lower concentrations (10-200μM); however, at higher concentrations (200-1000μM), DNA migration decreased with the increase of DEB concentration. This result indicated the presence of cross-links at >200μM, which was confirmed by the co-treatment experiments using the second genotoxic agents, tert-butyl hydroperoxide and methyl methanesulfonate. At 200μM, which appeared as a threshold, the DNA migration-retarding effect of cross-links was just observable by the co-treatment experiments. At <200μM, the effect of cross-links was too weak to be detected. The DEB-induced cross-links were determined to be DNA-DNA ones rather than DPC through incubating the liberated DNA with proteinase K prior to unwinding and electrophoresis. However, at the highest DEB concentration tested (1000μM), a small proportion of DPC could be formed. In addition, the experiments using neutral and weakly alkaline comet assays showed that DEB did not cause double-strand breaks, but did induce single-strand breaks (SSB) and alkali-labile sites (ALS). Since SSB and ALS are repaired more rapidly than cross-links, the results suggested that DNA-DNA cross-links, rather than DPC, were probably responsible for mutagenicity/carcinogenicity of DEB. 相似文献
20.
In the reaction between cellular DNA and cisplatin, different bifunctional adducts are formed including intrastrand and interstrand cross-links. The respective role of these lesions in the cytotoxicity of the drug is not yet elucidated. This paper deals with the current knowledge on cisplatin interstrand cross-links and presents results on the formation, stability and structure of these adducts. A key step in the studies of these lesions is the recent determination of solution and crystallographic structures of double-stranded oligonucleotides containing a unique interstrand cross-link. The DNA distortions induced by this adduct exhibit unprecedented features such as the location of the platinum residue in the minor groove, the extrusion of the cytosines of the cross-linked d(GpC).d(GpC) site, the bending of the helix axis towards the minor groove and a large DNA unwinding. In addition to a detailed determination of the distortions, the high resolution of the crystal structure allowed us to locate the water molecules surrounding the adduct. The possible implications of this structure for the chemical properties and the cellular processing of cisplatin interstrand cross-links are discussed. 相似文献