首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have recently examined the electrophysiology and ultrastructure of approximately 100 tactile spines from the metathoracic legs of adult cockroaches. In only one animal the single sensory neuron that innervates the spine was replaced with a pair of apparently identical neurons which we believe were both functional. As far as we are aware this is the first reported study of unprovoked duplication in a peripherally-located insect sensory neuron.Supported by the Canadian Medical Research Council and the Alberta Heritage Foundation for Medical Research  相似文献   

2.
The dynamic properties of sensory transduction in an insect mechanoreceptor, the femoral tactile spine of the cockroach, Periplaneta americana, have been studied by measurement of the frequency response function between randomly varying movement of the tactile spine and afferent action potentials from the sensory neuron which innervates it. The frequency response function of the mechanoreceptor has been characterized over a frequency range which is more than ten times larger than has previously been used for this preparation. Also the effects of varying the amplitude of the stimulating signal have been studied by the use of a range of input signal strengths from about 0.5 to 10 m R.M.S. displacement. The measured frequency response functions can all be well fitted by a theoretical relationship which is a fractional exponent of complex frequency, provided that the time delay caused by conduction of the action potentials from the sensory dendrite to the recording electrodes is taken into account. Under small signal conditions the exponent of complex frequency is close to 0.5 but with larger displacements its value decreases to about half this value. The overall sensitivity of the receptor, as measured by the gain of the frequency response function at a natural frequency of 1 radian/s, is not significantly altered by changes in the input movement amplitude, so that the receptor behaves linearly in this respect. However, the mean rate of action potential occurrence is not linearly related to input movement amplitude. These results are discussed in terms of current theories of sensory transduction and the possible role of tubular bodies in the dynamic behaviour of insect cuticular mechanoreceptors.  相似文献   

3.
土耳其斯坦东毕吸虫的扫描电镜观察   总被引:10,自引:0,他引:10  
血吸虫类中如血居科(sanguinicolidae)的Aporocotyle simplex Odhner,1900、裂体科(Schistosomatidae)的日本血吸虫(Schistosoma japonicum)曼氏血吸虫(S.mansoni)及埃及血吸虫(S.haematobium)等多种血吸虫均经扫描电镜观察(Johnson and Moriearts,1969;Silk et al., 1969;Robson and Erasmus, 1970; Miller et al., 1972; Kuntz et al.,1976、1977;Voge et al., 1978; Thulin, 1980;及何毅勋和马金鑫,1980等)。关于土耳其斯坦东毕吸虫[Orientobitharzia lurkestanica(skrjabin,1913)Dut et Srivastava,1955]的体表扫描电镜尚无报告,而只见有此虫种体壁及肠管的透射电镜观察的资料(Lavrov and Fedoseenke,1978)。本文部分作者最近在内蒙东部兴安岭以南部分地区进行牛羊土  相似文献   

4.
The tarsi of all three pairs of legs of both sexes of Aedes aegypti (L.) bear spine sensilla, five types of hair sensilla, which are designated A, B, C1, C2 and C3, and campaniform sensilla. Type A and B hairs, spines, and cam-paniform sensilla are innervated by one neuron with a tubular body, a characteristic of cuticular mechanoreceptors. In particular the hairs and spines are tactile receptors and the campaniform sensilla are proprioceptors. The C1, C2, and C3 hair sensilla have the morphological features of contact chemoreceptors. Type C1 and C3 hairs are innervated by five and four neurons, respectively, which extend to the tip of the hair. Type C2 is innervated by five neurons, one of which terminates at the base of the hair in a tubular body while the remaining four extend to the tip of the hair. The role of the type C hairs in oviposition behavior, nectar feeding, and recognition of conspecific females is discussed. Presumed efferent neurosecretory fibers occur near the spine and hair sensilla.  相似文献   

5.
Microtubules are prominent cellular components of the mechanosensory and chemosensory sensilla associated with the insect cuticle, and a range of hypotheses have been proposed to account for their role in sensory transduction. Chemical agents such as colchicine and vinblastine, which dissociate microtubules, also interfere with transduction in these sensilla, and this has been attributed to their anti-microtubule activity. We have now examined the dynamic properties of sensory transduction in the mechanosensitive neuron of the cockroach femoral tactile spine, after the application of colchicine, vinblastine and lumicolchicine. Concurrently we have examined the ultrastructure of the same sensory ending by transmission electron microscopy. All of the drugs reduced the mechanical sensitivity o the receptor. Colchicine and vinblastine achieved this reduction without altering the dynamic properties of the receptor but lumicolchicine changed the dynamic response, and increased the relative sensitivity to rapid movements. Conduction velocity, another measure of neuronal function, which relies upon ionic currents flowing through the membrane, was reduced by all three drugs. The effects of the drugs upon the ultrastructure of the sensory ending were also disparate. In the case of colchicine there was complete dissociation of microtubules in the tubular body and distal dendrite before a total loss of mechanical sensitivity. Vinblastine was less effective in dissociating microtubules, although more effective in the reduction of mechanical sensitivity. With lumicolchicine the dominant morphological effect was a severe disruption of the dendritic membrane. We conclude from these experiments that microtubules are not essential in the transduction of mechanical stimuli by cuticular receptors and that the effects of these drugs upon mechanosensitivity are not directly related to their dissociation of the microtubules in the tubular body, but are more likely to arise from actions upon the cell membrane. These actions could include effects upon tubulin in the membrane or upon other membrane components.  相似文献   

6.
Summary The femoral tactile spine of the cockroach (Periplaneta americana) contains a single sensory neuron, which adapts rapidly and completely to step deformations of the spine. Techniques for stable intracellular recording from the tactile spine neuron have recently been established, allowing electrophysiological investigation of mechanotransduction and adaptation in this sensory neuron. However, intracellular recordings from the neuron produce a wide range of action potential heights and thresholds, raising the possibility that some penetrations are in adjacent, but closely coupled supporting glial cells. This problem is exacerbated because the cell cannot be visualized during penetration.Systematic measurements of action potential heights and thresholds were made in tactile spine cells, together with identification of some penetrated cells by intracellular injection of Lucifer Yellow. All stained cells were clearly sensory neurons, although their action potentials amplitudes varied from 9 mV to 80 mV. Smaller action potentials were broader than larger action potentials, and the changes in height and shape could be explained by a simple cable conduction model using measured morphological and electrical parameters. The model could also account for the observed relationship between action potential height and threshold.These results indicate that reliable recording from the tactile spine neuron is possible, but that variability in the positions of the penetration or the spike initiating zone cause an apparently wide range of electrophysiological measurements.  相似文献   

7.
The Australian ‘little ash beetle’ Acanthocnemus nigricans (Coleoptera, Cleroidea, Acanthocnemidae) is attracted by forest fires. A. nigricans has one pair of unique prothoracic sensory organs and it has been speculated that these organs may play a role in fire detection. Each organ consists of a cuticular disc, which is fixed over an air-filled cavity. On the outer surface of the disc, about 90 tiny cuticular sensilla are situated. The poreless outer peg of a sensillum is 3–5 μm long and is surrounded by a cuticular wall. One ciliary sensory cell innervates the peg. As a special feature, the outer dendritic segment is very short already terminating below the cuticle. A massive electron-dense cylindrical rod, which most probably represents the hypertrophied dendritic sheath, extends through the cuticular canal connecting the tip of the outer dendritic segment to the peg. The dendritic inner segment and the soma are fused indistinguishably. Thin, leaflike extensions of glial cells deeply extend into that conjoint and considerably enlarged compartment which also contains large numbers of mitochondria. In summary, the sensilla of the sensory disc of A. nigricans represent a new type of insect sensillum of hitherto unknown function. The possible role of the prothoracic sensory organ in fire detection is discussed.  相似文献   

8.
Mechanotransduction in the femoral tactile spine of the cockroach, Periplaneta americana, was examined as a function of displacement of the spine axially in its socket. Linear behaviour was analyzed by measurement of the frequency response function between displacement and action potential output using sinusoidal stimulation and random noise stimulation. The measured frequency response functions can be well fitted by a relationship which is a fractional power of complex frequency. This power was close to 0.5 for all experiments. To distinguish between the effects of nonlinearity and of inherent variability, the averaged responses of the preparation to repeated sequences of pseudorandom noise were compared to those from experiments in which continuous pseudorandom noise were used. The lack of sensitivity of the coherence function to these two methods of measurement suggests that mechanical stimuli are encoded into action potentials with a large signal-to-noise ratio. The low value of the coherence function which is characteristics of insect mechanoreceptors is therefore due to the strong non-linearity of their responses. To investigate the nonlinear properties of transduction, the second-order frequency response function of the tactile spine was measured for random noise stimulation experiments. Two models of the transduction process were considered in which a linear element with memory was cascaded with a nonlinear element without memory in the two possible configurations. Comparison of the experimental second-order frequency response functions with predictions based upon these two models and the measured first-order frequency response suggests that the transduction mechanism can be modelled by a linear element, which may be associated with the viscoelastic properties of the dendritic tubular body, and a zeromemory nonlinearity, which is most likely to be rectification by the dendritic membrane.  相似文献   

9.
1. The femoral tactile spine of the cockroach is a mechanoreceptor with a single sensory neuron. The response to a step movement is a burst of action potentials which decays to zero in about 1 s. This rapid adaptation is a property of the action potential initiating region of the neuron. 2. The oxidizing agents chloramine-T and N-chlorosuccinimide selectively and irreversibly remove sodium channel inactivation from neurons in several preparations and are believed to act by oxidation of methionine or cysteine residues in the proteins of the sodium channel. 3. Chloramine-T and N-chlorosuccinimide, applied for a controlled time period, eliminated the rapid adaptation of the tactile spine neuron to an electrical depolarization. After treatment it fired tonically in response to a steady current stimulus. Longer applications of the agents eventually raised the threshold for action potential initiation. 4. Threshold behavior in the tactile spine neuron was characterized by measuring strength-duration relationships for stimulation with extracellular current pulses at the action potential initiating region. The two oxidizing agents caused a voltage-dependent modification of the dynamic threshold properties which led to the change from rapidly adapting to tonic behavior. 5. Two stronger oxidizing agents, N-bromoacetamide and N-bromosuccinimide, raised the threshold of the neuron without removing rapid adaptation. These two agents act similarly to chloramine-T and N-chlorosuccinimide on sodium inactivation in other neurons but are believed to oxidize the tryptophan, tyrosine and histidine residues of proteins in addition to cysteine and methionine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Summary The trochanteral hair plate of the cockroach leg contains approximately 60 hair sensilla that are deflected by a joint membrane during flexion of the leg. Previous work has shown that the organ is a mechanoreceptor which limits leg flexion during walking by reflex connections to flexor and extensor motoneurons. Functional analysis of the largest sensilla has shown that their behaviour may be well approximated by a velocity detector followed by a unidirectional rectifier.We report here the results of an examination of the largest sensilla by scanning and transmission electron microscopy in an attempt to correlate the structure with the known functional elements. Each hair is innervated by a single sensory dendrite which is surrounded by an electron dense dendritic sheath. The dendrite terminates below the hair shaft in a tubular body containing a parallel array of microtubules embedded in an electron dense matrix, while the dendritic sheath extends beyond the tubular body to form the walls of the ecdysial canal. At the proximal end of the tubular body the dendritic sheath and sensory dendrite are anchored to the cuticular socket by a fibrous dome which seems to form a fulcrum around which the tubular body can be deflected by movements of the hair. We suggest that the basis for the detection of velocity may be mechanical differentiation by a fluid space between the dendritic sheath and the tubular body. The structure is also discussed with relation to the mechanism of sensory transduction and the possible causes of the unidirectional sensitivity.Supported by the Canadian Medical Research Council. The authors gratefully acknowledge the expert technical assistance of Sita Prasad  相似文献   

11.
Phentolamine and related compounds have several different actions on nervous tissues in vertebrates and invertebrates, including a local anesthetic effect. However, recent work suggests that phentolamine can interfere with sensory transduction in insect mechanoreceptors at significantly lower concentrations than are required for conduction block. We tested the actions of phentolamine on sensory transduction and encoding in an insect mechanoreceptor, the cockroach tactile spine neuron and found that 500 microM phentolamine increased the action potential threshold by 50%. The passive membrane properties of the neuron were not affected, but one component of dynamic threshold change was strongly and selectively reduced. This component has previously been attributed to slowly inactivating sodium channels in the action potential initiating region, suggesting that these channels are the most phentolamine-sensitive sites.  相似文献   

12.
Studies by SEM and TEM revealed 6 types of integumental appendages on female uromeres VIII-X in Lasioptera rubi: microtrichia, not innervated; spines, probably without sensory function; nonporous sensory hairs, each containing one dendrite ending with a tubular body indicating a tactile function; uniporous sensory hairs, each innervated partly by 3 dendrites indicating a chemosensory function, partly by an additional dendrite with a tubular body indicating a tactile function; scoop-like sensilla, each containing partly a branched structure of dendrites in the distal half of the sensillum indicating an olfactory function, partly an unbranched dendrite ending at a pore near the base of the sensillum, most probably registrating chemical stimuli by contact or gustation; finally, nonporous bristles, all or some of them innervated, in a manner indicating a tactile function. In addition, two scolopophorous proprioceptors were found inside uromere X. The nonporous sensory hairs, the uniporous sensory hairs and the scolopophores may be used by the midge to determine the mechanical and chemical properties of potential oviposition sites. The spines and nonporous bristles may function as conidia carriers.  相似文献   

13.
Rapid sensory adaptation in the cockroach tactile spine neuron has previously been associated with a labile threshold for action potentials, which changes with the membrane potential by a process involving two time constants. A feed-forward, variable-threshold model has previously been used to account for the frequency response function of the neuron when stimulated with small-signal, white-noise currents. Here, we used a range of accurately controlled steps of extracellular current to stimulate the neuron. The same model was able to predict the individual step responses and could also fit the entire set of step responses from a single neuron if an initial, saturating, static nonlinearity was included. These results indicate that the two-time-constant, variable-threshold model can account for most of the rapidly adapting behavior of the tactile spine neuron.  相似文献   

14.
The sensilla ampullacea on the apical antennomere of the leaf-cutting ant Atta sexdens were investigated regarding both their responses to CO2 and their ultrastructure. By staining the sensillum during recording, we confirmed that the sensilla ampullacea are responsible for CO2 perception. We showed that the sensory neurons of the sensilla ampullacea are continuously active without adaptation during stimulation with CO2 (test duration: 1 h). This feature should enable ants to assess the absolute CO2 concentration inside their nests. Sensilla ampullacea have been found grouped mainly on the dorso-lateral side of the distal antennal segment. Scanning and transmission electron microscopic investigations revealed that the external pore opens into a chamber which connects to the ampulla via a cuticular duct. We propose protection against evaporation as a possible function of the duct. The ampulla houses a peg which is almost as long as the ampulla and shows cuticular ridges on the external wall. The ridges are separated by furrows with cuticular pores. The peg is innervated by only one sensory neuron with a large soma. Its outer dendritic segment is enveloped by a dendritic sheath up to the middle of the peg. From the middle to the tip numerous dendritic branches (up to 100) completely fill the distal half of the peg. This is the first report of a receptor cell with highly branched dendrites and which probably is tuned to CO2 exclusively.  相似文献   

15.
The posterior colon of worker-caste termites accommdates an abundant, heterogeneous population of procaryotic organisms which are retained by attachment to prominent cuticular spines elaborated from the gut wall. The spines extend to nearly one half the diameter of the lumen and are each supported by a specialized root cell in which bundles of parallel microtubules traverse the cytoplasm from the apical to the basal surfaces. Additional epithelial cells are present which show infoldings of the apical plasma membrane and are overlain by cuticle containing deep, vase-shaped pits opening to the gut lumen. It is proposed that the root cells are designed to resist shearing forces transmitted to the base of each spine during contractions of the gut. The cuticular pits may represent sites of permeability to the end products of microbial metabolism.  相似文献   

16.
The morphology of spider sensilla. I. Mechanoreceptors   总被引:3,自引:0,他引:3  
The common tactile hair sensilla of spider tarsi were studied in web spiders (Araneus) and ground spiders (Lycosa, Dugesiella) using scanning and transmission electron microscopy. All of these sensilla are innervated by three bipolar neurons whose dendrites end proximally at the sensillum base. Each dendritic terminal exhibits a tubular body, a dense array of microtubules typical for mechanoreceptive sensilla. A dendritic sheath encloses the outer dendritic segments and connects the dendritic terminals to cuticular components of the hair sensillum in three different ways: (1) A distal extension of the dendritic sheath connects to the midline of the hair base; (2) A forked arrangement of cuticular (?) strands attaches on both lateral sides of the hair base, and (3) The socket cuticle directly contacts a part of the dendritic sheath. The latter connection provides a fixed position for the three dendritic terminals and any movement of the hair shaft could be transmitted via connections (I) and (2). The triple innervation strongly suggests a directional sensitivity of these sensilla.Structural comparison between arachnid and insect mechanoreceptive sensilla indicates that tactile hair sensilla in Arachnida are multi-innervated whereas the corresponding reccptors in Insecta are singly innervated.  相似文献   

17.
The receptor potential in the sensory neuron of the cockroach femoral tactile spine was recently observed by raising the axon into an oil bath and measuring the decrementally conducted receptor current. Although action potential discharge in this receptor adapts rapidly, there was no evidence of adaptation in the receptor potential. In the present work we report that bursts of action potentials in the neuron produce a prolonged after-hyperpolarization and attenuate the receptor potential. Both of these effects could be important in receptor adaptation and we sought to identify their origin. It was impossible to control ionic concentrations in the fluid surrounding the sensory neuron because of an effective glial barrier, but it was possible to infuse the tissues with chemical agents which are known to block ionic membrane processes. Cobalt and cadmium, which inhibit calcium influx, eliminated the effects of action potentials, and ouabain had similar effects. These results suggest that both a calcium-activated potassium conductance and an electrogenic sodium pump are involved in these phenomena. However, it is argued that the former is probably more important.  相似文献   

18.
Each antenna of both sexes of adult Rhodnius prolixus has approximately 570 mechanosensitive neurons that innervate five morphologic types of cuticular mechanosensilla: campaniform sensilla, tapered hairs, trichobothria, and type I and type II bristle sensilla. Each campaniform sensillum and tapered hair is presumably innervated by one mechanosensitive bipolar neuron and probably functions in proprioception. The campaniform sensilla being located at the base of the scape could monitor the position of the antenna. Tapered hairs are found at the distal margin of flagellar segment I and projecting laterally from the bases of the pedicel and scape. They probably provide information about the relative positions of the antennal segments. Seven trichobothrium are located on the pedicel and three on flagellar segment I. Each trichobothrium has a long filamentous hair inserted into the base of a socket that extends inwardly as a cuticular tube and is innervated by one bipolar neuron with a tublar body, a parallel arrangement of microtubules associated with electron-dense material. The trichobothria may respond to small variations in air currents. Type I bristles occur at the base of the antenna and are the most numerous type of mechanosensillum; an average of 452 occur on each antenna of females and 440 on males. The bristle is curved toward the antennal shaft and is serrated distally. Type II bristles are located distally and are the second most numerous type of mechanosensillum; an average of 88 were counted on each antenna of females and 94 on males. The type II bristle is straight with small, longitudinal, external grooves and projects laterally from the antennal shaft. Each type I and II bristle sensillum is innervated by a bipolar neuron whose dendrite is divided into an inner and outer segment. The outer segment is encased by a dendritic sheath which may be highly convoluted and distally contains a tubular body. Two sheath cells are associated with each sensillum. Both types of bristle sensilla have a tactile function. The tubular bodies of both types of bristle sensilla have a complex structure indicating that they are very sensitive. Variations in the amount and arrangement of the electron-dense material at the tip of the tubular bodies may reflect differences in viscoelastic properties that underlie functional characteristics.  相似文献   

19.
The fine structure and distribution of various types of antennal sensilla in three nymphal stages and in adults of both solitary-reared (solitary) and crowd-reared (gregarious) phases of the desert locust, Schistocerca gregaria, were investigated by scanning and transmission electron microscopy. Four types of sensilla were identified: sensilla basiconica, s. trichodea, s. coeloconica and s. chaetica. S. basiconica contain up to 50 sensory neurons, each of which displays massive dendritic branching. The sensillar wall is penetrated by a large number of pores. In contrast, s. trichodea contain one to three sensory neurons that branch to give five or six dendrites in the sensillar lumen; the sensillum wall is penetrated by relatively few pores. The s. coeloconica are situated in spherical cuticular pits on the antennal surface. The s. coeloconica are of two types: one type contains one to three sensory neurons with double sensillar walls penetrated by slit-like pores, whereas the second type contains four sensory neurons with non-porous double sensillar walls. The s. chaetica have a flexible socket and a thick non-porous sensillum wall and contain four sensory neurons that send unbranched dendrites to a terminal pore. A fifth sensory neuron of the s. chaetica terminates in a tubular body at the base of the hair. S. basiconica and coeloconica are normally distributed over the entire antennal flagellum, with a concentration in the middle segments; s. trichodea have three areas of concentration on the 5th, 10th and 14th flagellar segments. Sensilla chaetica are most abundant on the terminal segment. Locusts raised in solitary conditions have more olfactory sensilla (s. basiconica and s. coeloconica) than crowd-reared locusts. The difference in sensillar numbers is more evident in adults than in nymphs. These results suggest that differences in the odour-mediated behaviour of nymphs and adults, and between the phases of S. gregaria, may be attributable to differences at the sensory input level.  相似文献   

20.
The antenna of fourth instar larvae of Aedes aegypti has one peg organ of a basiconic type innervated by four neurons. The dendrites are ensheathed to near their terminations at the peg tip by an electron-dense dendritic sheath and by a cuticular sheath. They have easy communication by diffusion with the external environment only at the tip through a peripheral ensheathing membrane and six slit-channels. One of the dendrites resembles a tubular body proximally and may be mechanoreceptive. The peg generally appears to be a contact chemoreceptor. There are three antennal hairs of a typical sensillum trichodeum type innervated at the base by one neuron each. An intricate terminal mechanism at the insertion of the dendrite in the hair is described. These are believed to be tactile hairs. There are also three antennal hairs each innervated by two neurons. The dendrite from one terminates at the base similar to that of a tactile hair, and is believed to function in a similar mechanoreceptive manner. The dendrite from the second neuron extends naked along the length of the hair lumen. It is believed to be primarily chemoreceptive, in a slow-acting general sensory function. In all the sensilla there appear to be secretions produced in the junction body regions of the dendrites, and there is evidence for accumulation of secretory materials in the dendritic tips in some of the sensilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号