首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taurine transport by lactating gerbil mammary tissue has been examined. Taurine uptake is, mediated by a high-affinity system which is specific for -amino acids. The uptake of taurine is Na+-dependent but appears not to be obligatorly dependent upon Cl. Thus, replacing Na+ with choline almost abolished taurine uptake. Substituting Cl with NO 3 had no effect whereas SCN induced a small but significant increase in taurine influx. Taurine uptake was Na+-dependent under conditions where Cl had been replaced with NO 3 . However, it is apparent that the Na+-dependent taurine transport system requires the presence of a permeable anion because replacing Cl with gluconate markedly reduced taurine uptake. Cell-swelling, induced by a hyposmotic challenge, increased the efflux of taurine from gerbil mammary tissue via a pathway sensitive to niflumic acid.Abbreviations Tris (Tris(hydroxymethyl)aminomethane - BES (N,N-bis[2-hydroxyethyl]-2-aminoethane sulphonic acid)  相似文献   

2.
A novel uptake system for the unusual sulfonated amino acid taurine was discovered in the prokaryote, encapsulated Staphylococcus aureus strain M. This strain has been shown previously to contain taurine in its capsular polysaccharide. Taurine uptake by whole cells incubated in buffer showed a saturable dependency upon Na+ and taurine uptake was itself a saturable process, stimulated by glucose, and markedly affected by temperature. No evidence was found for the inducibility of taurine uptake. In the presence of 10 mM NaCl Lineweaver-Burk plots revealed a Km of 42 μM and Vmax of 4.6 nmol/min per mg dry weight for taurine uptake at 37°C. Increasing concentrations of Na+ decreased the Km of the system and appeared to increase the Vmax. Of various other cations tested only Li+ supported marked taurine uptake. Excess unlabelled taurine did not cause efflux of radioactivity taken up. Taurine was taken up into cold trichloroacetic acid-soluble material and did not chromatograph as taurine, indicating rapid metabolism during or closely following uptake. Taurine uptake appeared to occur via a highly specific system because amino acids representing the major known groups of amino acid transport systems in S. aureus did not inhibit taurine uptake, and uptake was only slightly diminished by the structurally closely related compounds hypotaurine and 3-amino-1-propane sulfonic acid. Sulfhydryl group reagents, electron transport inhibitors, an uncoupler and inhibitors of Na+-linked transport processes inhibited taurine uptake. A variety of other metabolic inhibitors had little effect on taurine uptake.  相似文献   

3.
Here we characterized transepithelial taurine transport in monolayers of cultured human intestinal Caco-2 cells by analyzing kinetic apical and basolateral uptake and efflux parameters. Basolateral uptake was Na+- and Cl- dependent and was inhibited by β-amino acids. Uptake by this membrane showed properties similar to those of the apical TauT system. In both membranes, taurine uptake fitted a model consisting of a non-saturable plus a saturable component, with a higher half-saturation constant and transport capacity at the apical membrane (Km, 17.1 μmol/L; Vmax, 28.4 pmol·cm−2·5 min−1) than in the basolateral domain (Km, 9.46 μmol/L; Vmax, 5.59 pmol·cm−2·5 min−1). The non-saturable influx component, estimated in the absence of Na+ and Cl, showed no significant differences between apical and basolateral membranes (KD, 89.2 and 114.7 nL·cm−2 · 5 min−1, respectively). Taurine efflux from the cells is a diffusive process, as shown in experiments using preloaded cells and in trans-stimulation studies (apical KD,72.7 and basolateral KD, 50.1 nL·cm−2·5 min−1). Basolateral efflux rates were significantly lower than passive influx rates. We conclude that basolateral taurine uptake in Caco-2 cells is mediated by a transport mechanism that shares some properties with the apical system TauT. Moreover, calculation of unidirectional and transepithelial taurine fluxes reveals that apical influx of this amino acid is higher than basolateral efflux rates, thereby enabling epithelial cells to accumulate taurine against a concentration gradient.  相似文献   

4.
Sulphate uptake by Amphidinium carterae, Amphidinium klebsii and Gymnodinium microadriaticum grown on artificial seawater medium with sulphate, cysteine, methionine or taurine as sulphur source occurred via an active transport system which conformed to Michaelis-Menten type saturation kinetics. Values for K m ranged from 0.18–2.13 mM and V max ranged from 0.2–24.2 nmol · 105 cells–1 · h–1. K m for symbiotic G. microadriaticum was 0.48 mM and V max was 0.2 nmol · 105 cells–1 · h–1. Sulphate uptake was slightly inhibited by chromate and selenate, but not by tungstate, molybdate, sulphite or thiosulphate. Cysteine and methionine (0.1 mM), but not taurine, inhibited sulphate uptake by symbiotic G. microadriaticum, but not by the two species of Amphidinium. Uptake was inhibited 45–97% under both light and dark conditions by carbonylcyanide 3-chlorophenylhydrazone (CCCP); under dark conditions sulphate uptake was 40–60% of that observed under light conditions and was little affected by 3-(3,4-dichlorophenyl) 1,1-dimethylurea (DCMU).The uptake of taurine, cysteine and methionine by A. carterae, A. klebsii, cultured and symbiotic G. microadriaticum conformed to Michaelis-Menten type saturation kinetics. K m values of taurine uptake ranged from 1.9–10 mM; for cysteine uptake from 0.6–3.2 mM and methionine from 0.001–0.021 mM. Cysteine induced a taurine uptake system with a K m of 0.3–0.7 mM. Cysteine and methionine uptake by all organisms was largely unaffected by darkness or by DCMU in light or darkness. CCCP significantly inhibited uptake of these amino acids. Thus energy for cysteine and methionine uptake was supplied mainly by respiration. Taurine uptake by A. carterae was independent of light but was inhibited by CCCP, whereas uptake by A. klebsii and symbiotic G. microadriaticum was partially dependent on photosynthetic energy. Taurine uptake by cultured G. microadriaticum was more dependent on photosynthetic energy and was more sensitive to CCCP. Cysteine inhibited uptake of methionine and taurine by cultured and symbiotic G. microadriaticum to a greater extent than in the Amphidinium species. Methionine did not greatly affect taurine uptake, but did inhibit cysteine uptake. Taurine did not affect the uptake of cysteine or methionine.  相似文献   

5.
It has been reported that estrogen receptor-positive MCF-7 cells express TauT, a Na+-dependent taurine transporter. However, there is a paucity of information relating to the characteristics of taurine transport in this human breast cancer cell line. Therefore, we have examined the characteristics and regulation of taurine uptake by MCF-7 cells. Taurine uptake by MCF-7 cells showed an absolute dependence upon extracellular Na+. Although taurine uptake was reduced in Cl- free medium a significant portion of taurine uptake persisted in the presence of NO3 -. Taurine uptake by MCF-7 cells was inhibited by extracellular β-alanine but not by L-alanine or L-leucine. 17β-estadiol increased taurine uptake by MCF-7 cells: the Vmax of influx was increased without affecting the Km. The effect of 17β-estradiol on taurine uptake by MCF-7 cells was dependent upon the presence of extracellular Na+. In contrast, 17β-estradiol had no significant effect on the kinetic parameters of taurine uptake by estrogen receptor-negative MDA-MB-231 cells. It appears that estrogen regulates taurine uptake by MCF-7 cells via TauT. In addition, Na+-dependent taurine uptake may not be strictly dependent upon extracellular Cl-.  相似文献   

6.
Cell-swelling, induced by a hyposmotic shock, activates the release of taurine from lactating rat mammary tissue expiants. The degree of stimulation of taurine efflux was dependent upon the extent of cell-swelling. Volume-sensitive taurine release was attenuated by the anion transport inhibitors NPPB, DIOA, DIDS, niflumate, flufenamate, mefenamate and diiodosalicylate but not by salicylate. Cell-swelling, following a hyposmotic challenge, did not increase the unidirectional efflux of radiolabelled I or D-asparate from mammary tissue expiants. The results suggest that although mammary tissue expresses a volume-sensitive amino acid transport system which is inhibited by anion transport blockers the pathway has no identity with volume-activated anion channels.  相似文献   

7.
The observation that concanavalian A can inhibit milk secretion was evaluated in an in vitro system employing minced mammary gland or isolated alveoli from lactating rats. Release of milk constituents (casein, lactose and fat globules) into the medium in the presence and absence of concanavalin A was measured during 1 or 2 h incubations. The effect of concanavalin A on glucose uptake and CO2 production of the minced tissued was also studied. Concanavalin A suppressed release of milk components at a concentration as low as 80 μg/ml of medium. Respiration of minced mammary tissue in the presence of concanavalin A (100 μg/ml of medium) was essentially the same as that of the control. The data are evidence that concanavalin A acts directly on the mammary cell in suppressing milk secretion and that the effect is not due to cytotoxicity.  相似文献   

8.
Taurine and zinc exert neurotrophic effects. Zinc modulates Na+/Cl-dependent transporters. This study examined the effect of zinc (ZnSO4) ex vivo and zinc chelator N,N,N′,N′-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) in vivo on [3H]taurine transport in goldfish retina. The effect of TPEN in vivo on taurine and zinc levels was determined. Isolated cells were incubated in Ringer with zinc (0.1–100 μM). Taurine transport was done with taurine (0.001–1 mM) and 50 nM [3H]taurine. Zinc (100 μM) noncompetitively inhibited taurine transport. TPEN was administered intraocularly and retinas extracted 3, 5 and 10 days later. Taurine was determined by HPLC (nmol/mg protein) and zinc by spectrophotometry ICP (mg/mg protein). Taurine and zinc levels decreased at 3 days and increased at 10 days after TPEN administration. At 10 days after intraocular TPEN, taurine transport affinity increased (K s = 0.018 ± 0.006 vs. 0.028 ± 0.008 mM). Apparently, zinc deficiency affects the taurine–zinc complex and taurine availability. The increased taurine uptake affinity by TPEN was possibly associated with a response to maximize retinal taurine content at low zinc concentration.  相似文献   

9.
The kinetics and specificity of GABA and taurine uptake were studied in the bullfrog sympathetic ganglia. GABA uptake system consisted of simple saturable component and taurine uptake system consisted of two saturable components exclusive of non-saturable influx. Taurine unaffected GABA uptake while GABA inhibited taurine uptake competitively with theK i/Km ratio of 38. GABA (5.14 M) uptake was inhibited by -aminovaleric acid and slightly by 2,4-diaminobutyric acid (5 mM, each) among ten structural analogs. Taurine uptake under high-affinity conditions was most strongly suppressed by hypotaurine and -alanine competitively with theK i/Km ratio of 1.0 and 1.9, respectively. Autoradiography showed that glial cells were heavily labeled by both [3H]GABA and [3H]taurine. These results suggest that GABA is transported by a highly specific carrier system distinct from the taurine carrier and that taurine, hypotaurine, and -alanine may share the same high-affinity carrier system in the glial cells of the bullfrog sympathetic ganglia.  相似文献   

10.
Taurine is believed to be a modulator of membrane excitability in muscle and a neuroinhibitory transmitter in the central nervous system. The retina and pineal contain relatively large quantities of taurine. Taurine levels in the retina are reported to be responsive to variations in lighting conditions. We report here a carcadian rhythm for taurine in the mature male rat pineal gland. The maximum taurine concentration occurs at the midpoint of the light period, 24 ± 1.9 nmoles/gland, and the minimum at the beginning of the dark period, 13.9 ± 1.6 nmoles/gland. Sympathectomy by bilateral superior cervical ganglionectomy lowered pineal taurine levels. Constant light and blinding had no effect. Taurine was demonstrated to be taken up by the pineal gland invitro in organ culture. The uptake was saturable, Km = 2.0 mM, and sodium dependent. The close structural analogs hypotaurine and β-alanine inhibited taurine uptake but α-alanine did not. We have demonstrated a circadian rhythm for taurine content in the rat pineal gland and the presence of a sodium-dependent transport system for taurine in the pineal invitro in organ culture.  相似文献   

11.
Summary The apical surface of the retinal pigment epithelium (RPE) faces the neural retina whereas its basal surface faces the choroid. Taurine, which is necessary for normal vision, is released from the retina following light exposure and is actively transported from retina to choroid by the RPE. In these experiments, we have studied the effects of taurine on the electrical properties of the isolated RPE of the bullfrog, with a particular focus on the effects of taurine on the apical Na+–K+ pump.Acute exposure of the apical, but not basal, membrane of the RPE to taurine decreased the normally apical positive transepithelial potential (TEP). This TEP decrease was generated by a depolarization of the RPE apical membrane and did not occur when the apical bath contained sodium-free medium. With continued taurine exposure, the initial TEP decrease was sometimes followed by a recovery of the TEP toward baseline. This recovery was abolished by strophanthidin or ouabain, indicating involvement of the apical Na+–K+ pump.To further explore the effects of taurine on the Na+–K+ pump, barium was used to block apical K+ conductance and unmask a stimulation of the pump that is produced by increasing apical [K+] 0 . Under these conditions, increasing [K+] 0 hyperpolarized the apical membrane and increased TEP. Taurine reversibly doubled these responses, but did not change total epithelial resistance or the ratio of apical-to-basal membrane resistance, and ouabain abolished these responses.Collectively, these findings indicate the presence of an electrogenic Na+/taurine cotransport mechanism in the apical membrane of the bullfrog RPE. They also provide direct evidence that taurine produces a sodium-dependent increase in electrogenic pumping by the apical Na+–K+ pump.  相似文献   

12.
Specific substances binding [3H]triamcinolane acetonide were detected in the cytosol fraction of the lactating mammary gland of the rat using sucrose gradient centrifugation. These receptors, which were protein in nature, exhibited sedimentation coefficients of 7–8 S and dissociated into lower molecular weight components sedimenting at 4–5 S when separated on sucrose gradients containing 0.4 M KCl. The cytoplasmic form of the binding protein was relatively specific for glucocorticoids although progesterone inhibited binding significantly. The dissociation constant (Kd) of the receptor-ligand complex was in the range of 10−8 M. p-Chloromercuribenzoate diminished the ligand-binding capacity of the receptor suggesting a role for sulfhydryl groups in the binding reaction. Cytosols from mammary tissue obtained from virgin and pregnant rats revealed a paucity of binding sites as compared to those in the lactating gland. Examination of ligand-binding specificity indicates that these glucocorticoid-binding sites are distinct and easily discriminated from those of either the estrogen receptor of the mammary gland or the triamcinolone-binding component in plasma.  相似文献   

13.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

14.
Taurine, a sulfur-containing β-amino acid, is highly contained in heart and skeletal muscle. Taurine has a variety of biological actions, such as ion movement, calcium handling and cytoprotection in the cardiac and skeletal muscles. Meanwhile, taurine deficiency leads various pathologies, including dilated cardiomyopathy, in cat and fox. However, the essential role of taurine depletion on pathogenesis has not been fully clarified. To address the physiological role of taurine in mammalian tissues, taurine transporter-(TauT-) knockout models were recently generated. TauTKO mice exhibited loss of body weight, abnormal cardiac function and the reduced exercise capacity with tissue taurine depletion. In this chapter, we summarize pathological profile and histological feature of heart and skeletal muscle in TauTKO mice.  相似文献   

15.
The influence of prostaglandins (PG) F2α and E2 on milk ejection, mammary artery blood flow and arterial blood pressure was studied in lactating cows. Injections of both PG in the jugular vein or the carotid artery induced milk ejection after a relatively long latency period. The minimal effective dose amounted to 1 to 5 μg and to 100 to 300 μg for PGF2α and PGE2 respectively. In several cases with PGF2α and once with PGE2 milk ejection was accompanied with a simultaneous increase in blood flow through the mammary artery whereas arterial blood pressure remained unchanged. Both routes of administration showed the same response. It was suggested that the effect of the PG on the bovine myoepithelium is indirect, possibly secondary to a release of oxytocin from the neurohypophysis.  相似文献   

16.
The development of taurine uptake into the unicellular greenalga Chlorella fusca 211-8b was characterized as a specificresponse to either nitrate or sulphate limitation. Taurine transportunder nitrogen starvation was stimulated by low pH and showeda biphasic kinetics with Km-values of 1.1 x 10–3 mol dm–3and 1.0 x 10–2 mol dm–3. Uptake was substantiallyinhibited by all - and ß-amino acids tested, whereassulphonate analogues failed to diminish taurine accumulation.Thus, uptake seemed to be mediated by a ‘general aminoacid permease’, unable to discriminate between carboxyland sulphonyl groups. However, Chlorella fusca could not catabolizethis unusual ß-amino acid and mobilize the amino-boundnitrogen for growth. Only a small group of -amino acids supportedthe growth of Chlorella fusca as an efficient nitrogen source. Key words: Taurine uptake, nitrogen starvation, amino acid uptake, Chlorella fusca.  相似文献   

17.
Summary Chloroquine is an antimalarial and antirheumatic lysosomotropic drug which inhibits taurine uptake into and increases efflux from cultured human lymphoblastoid cells. It inhibits taurine uptake by rat lung slices and affects the uptake and release of cystine from cystinotic fibroblasts. Speculations on its mode of action include a proton gradient effect, a non-specific alteration in membrane integrity, and membrane stabilization. In this study, the effect of chloroquine on the uptake of several amino acids by rat renal brush border membrane vesicles (BBMV) was examined. Chloroquine significantly inhibited the secondary active, NaCl-dependent component of 10µM taurine uptake at all concentrations tested, but did not change equilibrium values. Analysis of these data indicated that the inhibition was non-competitive. Taurine uptake was reduced at all osmolarities tested, but inhibition was greatest at the lowest osmolarity. Taurine efflux was not affected by chloroquine, nor was the NaCl-independent diffusional component of taurine transport. Chloroquine (1 mM) inhibited uptake of the imino acids L-proline and glycine, and the dibasic amino acid L-lysine. It inhibited the uptake of D-glucose, but not the neutral-amino acids L-alanine or L-methionine. Uptake of the dicarboxylic amino acids, L-glutamic acid and L-aspartic acid, was slightly enhanced. With regard to amino acid uptake by BBMV, these findings may support some of the currently proposed mechanisms of the action of chloroquine but further studies are indicated to determine why it affects the initial rate of active amino acid transport.  相似文献   

18.
Cryopreserved bovine mammary epithelial cells prepared from lactating mammary tissue synthesize and secrete the milk proteins alphas1-casein, lactoferrin (Lf), and alpha-lactalhumin during in vitro culture on collagen gels in serum-free medium. Each milk protein is differently regulated by detachment and thickness of the collagen substratum, fetal calf scrum, and prolactin in the medium. Collagen detachment did not modulate lactoferrin secretion but strongly induced casein secretion, with detachment on day 6 (after formation of cell sheets) inducing casein secretion to 3 μg/ml medium, which was 2–3-fold higher than for cells on collagen detached on day 2 (prior to cell spreading to form sheets), and ten-fold higher than for cells grown on collagen not detached. Alpha-lactalbumin secretion was also induced, but only to low levels, in cells grown on detached but not on attached collagen. Cells grown on thin collagen gels secreted lower levels of lactoferrin and casein compared to cells on thick collagen. Lactoferrin but not casein secretion was increased in cells grown in the presence of fetal calf serum. Casein but not lactoferrin secretion was completely dependent on prolactin. Cells grown serum-free on collagen gels detached on day 6 of culture showed a polarized epithelial cell layer with high differentiation evidenced by the apical microvilli, tight junctions, and fat droplets surrounded by casein-containing secretory vesicles. An underlying layer of myoepithelial-like cells was also evident. These studies show for eryopreserved primary bovine mammary cells prepared from lactating mammary tissue the induction of highly differentiated and polarized cell morphology and ultrastructure with concomitant induction of the secretion of casein, lactoferrin. and alpha-lactalbumin in vitro, and that the non-coordinate regulation of milk protein secretion by substratum, prolactin, and serum likely involves alternate routing and control of secretion pathways for casein and lactoferrin.  相似文献   

19.
Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions.  相似文献   

20.
The kinetics of formation of the complex ion, μ-carbonato-di-μ-hydroxo-bis((1,5-diamino-3-aza-pentane) cobalt(III), from the tri-μ-hydroxo-bis((1,5-diamino-3-aza-pentane(III)cobalt(III)) ion in aqueous buffered carbonate solution have been studied spectrophotometrically at 295 nm over the ranges 20.0θ°C34.8, 8.03pH9.44, 5 mM [CO32−35 mM and at an ionic strength of 0.1 M (LiClO4). On the basis of the kinetic results a mechanism, involving rapid cleavage of an hydroxo bridge followed by carbon dioxide uptake with subsequent bridge formation, has been proposed. At 25 °C, the rate of the carbon dioxide uptake is 0.58 M−1 s−1 with ΔH≠ = (13.2±0.7) kcal mol−1 and ΔS≠ = (−15.1 ± 0.7) cal deg−1 mol−1. The results are composed with those obtained for several mononuclear cobalt(III) and one dinuclear cobalt(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号