首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We previously showed that the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is recruited to the activated HXT2 and HXT4 genes and plays a role in the association of TBP-associated factors. Using the HXT2 and HXT4 genes, we now present evidence for a functional link between Snf1p-dependent activation, recruitment of the SAGA complex, histone H3 removal, and H3 acetylation. Recruitment of the SAGA complex is dependent on the release of Ssn6p-Tup1p repression by Snf1p. In addition, we found that the Gcn5p subunit of the SAGA complex preferentially acetylates histone H3K18 on the HXT2 and HXT4 promoters and that Gcn5p activity is required for removal of histone H3 from the HXT4 promoter TATA region. In contrast, histone H3 removal from the HXT2 promoter does not require Gcn5p. In conclusion, although similar protein complexes are involved, induction of HXT2 and HXT4 displays important mechanistic differences.  相似文献   

6.
7.
8.
The gene encoding ribonucleotide reductase 3 (RNR3) is strongly induced in response to DNA damage. Its expression is strictly dependent upon the TAF(II) subunits of TFIID, which are required for the recruitment of SWI/SNF and nucleosome remodeling. However, full activation of RNR3 also requires GCN5, the catalytic subunit of the SAGA histone acetyltransferase complex. Thus, RNR3 is dependent upon both TFIID and SAGA, two complexes that deliver TATA-binding protein (TBP) to promoters. Furthermore, unlike the majority of TFIID-dominated genes, RNR3 contains a consensus TATA-box, a feature of SAGA-regulated core promoters. Although a large fraction of the genome can be characterized as either TFIID- or SAGA-dominant, it is expected that many genes utilize both. The mechanism of activation and the relative contributions of SAGA and TFIID at genes regulated by both complexes have not been examined. Here we delineated the role of SAGA in the regulation of RNR3 and contrast it to that of TFIID. We find that SAGA components fulfill distinct functions in the regulation of RNR3. The core promoter of RNR3 is SAGA-dependent, and we provide evidence that SAGA, not TAF(II)s within TFIID, are largely responsible for TBP recruitment. This taken together with our previous work provides evidence that SAGA recruits TBP, whereas TFIID mediates chromatin remodeling. Thus, we described an unexpected shift in the division of labor between these two complexes and provide the first characterization of a gene that requires both SAGA and TFIID.  相似文献   

9.
10.
Mot1-mediated control of transcription complex assembly and activity   总被引:6,自引:0,他引:6  
  相似文献   

11.
12.
In Saccharomyces cerevisiae, many osmotically inducible genes are regulated by the Sko1p-Ssn6p-Tup1p complex. On osmotic shock, the MAP kinase Hog1p associates with this complex, phosphorylates Sko1p, and converts it into an activator that subsequently recruits Swi/Snf and SAGA complexes. We have found that phospholipase C (Plc1p encoded by PLC1) is required for derepression of Sko1p-Ssn6p-Tup1p-controlled osmoinducible genes upon osmotic shock. Although plc1Delta mutation affects the assembly of the preinitiation complex after osmotic shock, it does not affect the recruitment of Hog1p and Swi/Snf complex at these promoters. However, Plc1p facilitates osmotic shock-induced recruitment of the SAGA complex. Like plc1Delta cells, SAGA mutants are osmosensitive and display compromised expression of osmotically inducible genes. The reduced binding of SAGA to Sko1p-Ssn6p-Tup1p-repressed promoters in plc1Delta cells does not correlate with reduced histone acetylation. However, SAGA functions at these promoters to facilitate recruitment of the TATA-binding protein. The results thus provide evidence that Plc1p and inositol polyphosphates affect derepression of Sko1p-Ssn6p-Tup1p-controlled genes by a mechanism that involves recruitment of the SAGA complex and TATA-binding protein.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号