首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tbx20-related T-box genes have been implicated in the regulation of heart development in several vertebrate species. In the present report, we demonstrate that a pair of genes representing Drosophila orthologs of Tbx20, midline (mid) and H15, have important functions during the development of the Drosophila equivalent of the heart, i.e. the dorsal vessel. We show that mid is among the earliest known genes that are specifically expressed in all cardioblasts during early embryogenesis, and H15 expression is subsequently activated in the same cells. Mutant embryos lacking the activity of mid, or both mid and H15, are able to form dorsal vessels with largely normal numbers of cardioblasts and pericardial cells. Furthermore, the mutant cardioblasts express several general cardioblast markers such as Mef2 and Toll at normal levels. However, the expression of tinman (tin), which normally occurs in four out of six cardioblasts in each hemisegment of the dorsal vessel, is almost abolished. Conversely, the expression of the Dorsocross (Doc) T-box genes, which is normally restricted to the two Tin-negative cardioblasts in each hemisegment, is strongly expanded into the majority of cardioblasts in mid mutant and mid+H15-deficient embryos. Altogether, the data from the loss-of-function phenotypes demonstrate that mid, and to a lesser degree H15, have important roles in establishing the metameric patterning of cardioblast identities, but not in specifying cardioblasts as such. Ectopic expression of mid causes ectopic tin expression and, less efficiently, produces extra cardioblasts. We propose that one of the major functions of mid and H15 during cardioblast development is the re-activation of tin expression at a stage when the induction of tin by Dpp in the dorsal mesoderm has ceased. Through this activity, mid and H15 are required for the normal functional diversification of cardioblasts and the expression of tin-dependent terminal differentiation genes within the dorsal vessel.  相似文献   

2.
3.
4.
5.
We have followed the normal development of the different cell types associated with the Drosophila dorsal vessel, i.e. cardioblasts, pericardial cells, alary muscles, lymph gland and ring gland, by using several tissue-specific markers and transmission electron microscopy. Precursors of pericardial cells and cardioblasts split as two longitudinal rows of cells from the lateral mesoderm of segments T2-A7 (cardiogenic region) during stage 12. The lymph gland and dorsal part of the ring gland (corpus allatum) originate from clusters of lateral mesodermal cells located in T3 and T1/dorsal ridge, respectively. Cardioblast precursors are strictly segmentally organized; each of T2-A6 gives rise to six cardioblasts. While moving dorsally during the stages leading up to dorsal closure, cardioblast precursors become flattened, polarized cells aligned in a regular longitudinal row. At dorsal closure, the leading edges of the cardioblast precursors meet their contralateral counterparts. The lumen of the dorsal vessel is formed when the trailing edges of the cardioblast precursors of either side bend around and contact each other. The amnioserosa invaginates during dorsal closure and is transiently attached to the cardioblasts; however, it does not contribute to the cells associated with the dorsal vessel and degenerates during late embryogenesis. We describe ultrastructural characteristics of cardioblast differentiation and discuss similarities between cardioblast development and capillary differentiation in vertebrates. Correspondence to: V. Hartenstein  相似文献   

6.
Cardiac induction in Drosophila relies on combinatorial Dpp and Wg signaling activities that are derived from the ectoderm. Although some of the actions of Dpp during this process have been clarified, the exact roles of Wg, particularly with respect to myocardial cell specification, have not been well defined. Our present study identifies the Dorsocross T-box genes as key mediators of combined Dpp and Wg signals during this process. The Dorsocross genes are induced within the segmental areas of the dorsal mesoderm that receive intersecting Dpp and Wg inputs. Dorsocross activity is required for the formation of all myocardial and pericardial cell types, with the exception of the Eve-positive pericardial cells. In an early step, the Dorsocross genes act in parallel with tinman to activate the expression of pannier, a cardiogenic gene encoding a Gata factor. Our loss- and gain-of-function studies, as well as the observed genetic interactions among Dorsocross, tinman and pannier, suggest that co-expression of these three genes in the cardiac mesoderm, which also involves cross-regulation, plays a major role in the specification of cardiac progenitors. After cardioblast specification, the Dorsocross genes are re-expressed in a segmental subset of cardioblasts, which in the heart region develop into inflow valves (ostia). The integration of this new information with previous findings has allowed us to draw a more complete pathway of regulatory events during cardiac induction and differentiation in Drosophila.  相似文献   

7.
8.
果蝇心脏位于身体背部,是一个体节性重复的线性管状结构。在hedgehog(hh)基因的信号诱导下,seven-up(svp)基因调控果蝇的心脏发育,在每个体节的两个心肌细胞和两个副心肌细胞中表达。结果表明,在svp纯合突变体中,报告基因lacZ在心肌细胞中的表达图式正常,但在副心肌细胞中的表达图型明显异常,而且部分EPC细胞生长尺寸增加。某些体节的DA1肌肉祖细胞缺失,晚期突变体胚胎体壁肌肉细胞也呈现异常,表明基因svp的活性对果蝇副心肌细胞、DA1肌肉祖细胞和体壁肌肉细胞的分化是必须的,并且可能与EPC副心肌细胞的尺寸生长有关。  相似文献   

9.
10.
11.
12.
13.
Drosophila melanogaster has become one of the important model systems to investigate the development and differentiation of the heart. After 24h after egg deposition (h AED), a simple tube-like organ is formed, consisting of essentially only two cell types, the contractile cardioblasts and non-myogenic pericardial cells. In contrast to the detailed knowledge of heart formation during embryogenesis, only a few studies deal with later changes in heart morphology and/or function. This is mainly due to the difficulties to carry out whole mount stainings in later stages without complicated dissections or treatments of the cuticle and puparium. In this paper we describe the identification of a hand genomic region, which is fully sufficient to drive GFP expression in heart cells of embryos, larvae, and adults. This serves as an initial step to understand the position of hand in the early regulatory network in heart development. Furthermore, we demonstrate that our newly created GFP reporter line is extremely useful to study postembryonic heart differentiation. For the first time we document heart differentiation in living animals throughout all developmental stages of Drosophila melanogaster, including embryogenesis, all three larval stages, metamorphosis, and the adult life with respect to pericardial cells and cardiomyocytes.  相似文献   

14.
15.
The Drosophila dorsal vessel is a segmentally repeated linear organ, in which seven-up (svp) is expressed in two pairs of cardioblasts and two pairs of pericardial cells in each segment. Under the control of hedgehog (hh) signaling from the dorsal ectoderm, svp participates in diversifying cardioblast identities within each segment. In this experiment, the homozygous embryos of svp mutants exhibited an increase in cell size of Eve positive pericardial cells (EPCs) and a disarranged expression pattern, while the cardioblasts pattern of svp-lacZ expression was normal. In the meantime, the DA1 muscle founders were absent in some segments in svp mutant embryos, and the dorsal somatic muscle patterning was also severely damaged in the late stage mutant embryos, suggesting that svp is required for the differentiation of Eve-positive pericardial cells and DA1 muscle founders and may have a role in EPC cell growth.  相似文献   

16.
Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters (“cardiogenic clusters”) that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts.  相似文献   

17.
18.
19.
Heart development in the Drosophila embryo starts with the specification of cardiac precursors from the dorsal edge of the mesoderm through signaling from the epidermis. Cardioblasts then become aligned in a single row of cells that migrate dorsally. After contacting their contralateral counterparts, cardioblasts undergo a cytoskeletal rearrangement and form a lumen. Its simple architecture and cellular composition makes the heart a good system to study mesodermal patterning, intergerm layer signaling, and the function of cell adhesion molecules (CAMs) during morphogenesis. In this paper we focus on three adhesion molecules, faint sausage (fas), shotgun/DE-cadherin (shg/DE-Cad), and laminin A (lam A), that are essential for heart development. fas encodes an Ig-like CAM and is required for the correct number of cardioblasts to become specified, as well as proper alignment of cardioblasts. shg/DE-Cad is expressed and required at a later stage than fas; in embryos lacking this gene, cardioblasts are specified normally and become aligned, but do not form a lumen. Additionally, cardioblasts of shg mutant embryos show a redistribution of phosphotyrosine as well as a loss of Armadillo from the membrane, indicating defects in cell polarity. The shg phenotype could be phenocopied by applying EGTA or cytochalasin D, supporting the view that Ca2+-dependent adhesion and the actin cytoskeleton are instrumental for heart lumen formation. As opposed to cell-cell adhesion, cell-substrate adhesion mechanisms are not required for heart morphogenesis, but only for maintenance of the differentiated heart. Embryos lacking the lam A gene initially developed a normal heart, but showed twists and breaks of cardioblasts at late embryonic stages. We discuss our findings in light of recent results that elucidate the function of different adhesion systems in vertebrate heart development.  相似文献   

20.
Endocytosis and trafficking within the endocytosis pathway are known to modulate the activity of different signaling pathways. Epsins promote endocytosis and are postulated to target specific proteins for regulated endocytosis. Here, we present a functional link between the Notch pathway and epsins. We identify the Drosophila ortholog of epsin, liquid facets (lqf), as an inhibitor of cardioblast development in a genetic screen for mutants that affect heart development. We find that lqf inhibits cardioblast development and promotes the development of fusion-competent myoblasts, suggesting a model in which lqf acts on or in fusion-competent myoblasts to prevent their acquisition of the cardioblast fate. lqf and Notch exhibit essentially identical heart phenotypes, and lqf genetically interacts with the Notch pathway during multiple Notch-dependent events in Drosophila. We extended the link between the Notch pathway and epsin function to C. elegans, where the C. elegans lqf ortholog acts in the signaling cell to promote the glp-1/Notch pathway activity during germline development. Our results suggest that epsins play a specific, evolutionarily conserved role to promote Notch signaling during animal development and support the idea that they do so by targeting ligands of the Notch pathway for endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号