首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show the existence of functional vasoactive intestinal peptide (VIP) receptors in normal human female genital tract (endometrium, myometrium, ovary and Fallopian tube) as well as in leiomyoma (a frequent uterine pathology). The correlation between VIP binding and stimulation of adenylyl cyclase activity for all studied tissues was linear (r = 0.86) suggesting the expression of VIP receptors throughout the human female genital tract. Immunodetection of VIP receptor subtypes gave different molecular weights for VPAC(1) (47 kDa primarily) and VPAC(2) (65 kDa), which may be due to different glycosylation extents. In conclusion, this study demonstrates the expression of both subtypes of VIP receptors and their functionality in human female genital tract, suggesting that this neuropeptide could play an important physiological and pathophysiological role at this level.  相似文献   

2.
125I-VIP bound specifically to sites on human, rat, guinea pig, and rabbit lung membranes with a dissociation constant (KD) of 60-200 pM and binding site maxima of 200-800 fmol/mg of protein. The presence of a second lower affinity site was detected but not investigated further. High affinity 125I-VIP binding was reversible and displaced by structurally related peptides with an order of potency: VIP greater than rGRF greater than PHI greater than hGRF greater than secretin = Ac Tyr1 D Phe2 GRF. 125I-VIP has been covalently incorporated into lung membranes using disuccinimidyl suberate. Sodium dodecyl sulfate-polyacrilamide gel electrophoresis of labeled human, rat, and rabbit lung membranes revealed major 125I-VIP-receptor complexes of: Mr = 65,000, 56,000, and 64,000 daltons, respectively. Guinea pig lung membranes exhibited two 125I-VIP-receptor complexes of Mr = 66,000 and 60,000 daltons. This labeling pattern probably reflects the presence of differentially glycosylated forms of the same receptor since treatment with neuroaminidase resulted in a single homogeneous band (Mr = 57,000 daltons). Soluble covalently labeled VIP receptors from guinea pig and human lung bound to and were specifically eluted from agarose-linked wheat germ agglutinin columns. Our studies indicate that mammalian lung VIP receptors are glycoproteins containing terminal sialic acid residues.  相似文献   

3.
J Calam  R J Unwin  J Singh  S Dorudi  W S Peart 《Peptides》1984,5(2):441-443
VIP containing nerves are present in the kidney and plasma VIP levels are elevated in cardiac failure and severe liver disease. We studied the effects of intravenous VIP; 6 pmol kg-1 min-1 on 6 normal subjects and 3 patients with liver disease. In normal subjects VIP produced flushing and significant rises in heart rate and pulse pressure but the clearance rates of paraaminohippurate and creatinine did not change significantly. Urine flow fell to about 1/3 and the rate of excretion of electrolytes (except phosphate) fell to about a half of control values. Plasma renin activity rose about 3-fold and there were significant rises in haematocrit and the plasma concentrations of solids, calcium and phosphate. The patients with liver disease responded similarly. Elevated plasma VIP could contribute to salt and water retention in disease states.  相似文献   

4.
Bovine t hymic peptide extract (1–100 g/ml) is shown to completely inhibit the binding of [125I]VIP to rat blood mononuclear cells, lymphoid cells of spleen, and liver plasma membranes. In the three models, the bovine thymic peptide extract inhibits [125I]VIP binding with a potency that is 4000–7000 times lower than that of the native VIP, on a weight basis. In rat liver plasma membranes, the bovine thymic peptide extract stimulates adenylate cyclase with a maximal efficiency that is similar to that of VIP. At maximal doses, VIP and thymic peptide extract do not exert an additive effect on adenylate cyclase, suggesting that the activation of the enzyme by the bovine thymic peptide extract occurs through VIP receptors. Finally, no VIP-like immunoreactivity was detected in the thymic peptide extract using an antiserum raised against mammalian VIP. All these data suggest the presence in the bovine thymic peptide extract of a new substance which behaves as a VIP agonist in rat.  相似文献   

5.
6.
7.
8.
9.
Functional vasoactive intestinal peptide (VIP) receptors have been characterized in rat peritoneal macrophages. The binding depended on time, temperature and pH, and was reversible, saturable and specific. Scatchard analysis of binding data suggested the presence of two classes of binding sites: a class with high affinity (kd = 1.1 +/- 0.1 nM) and low capacity (11.1 +/- 1.5 fmol/10(6) cells), and a class with low affinity (kd = 71.6 +/- 10.2 nM) and high capacity (419.0 +/- 80.0 fmol/10(6) cells). Structural requirements of these receptors were studied with peptides structurally or not structurally related to VIP. Several peptides inhibited 125I-VIP binding to rat peritoneal macrophages with the following order of potency: VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, somatostatin, pancreastatin and octapeptide of cholecystokinin (CCK 26-33) were ineffective. VIP induced an increase of cyclic AMP production. Half-maximal stimulation (ED50) was observed at 1.2 +/- 0.5 nM VIP, and maximal stimulation (3-fold above basal levels) was obtained between 0.1-1 microM. Properties of these binding sites strongly support the concept that VIP could behave as regulatory peptide on the macrophage function.  相似文献   

10.
Studies toward the biosynthesis of vasoactive intestinal peptide (VIP)   总被引:2,自引:0,他引:2  
I Gozes  M Bodner  H Shwartz  Y Shani  M Fridkin 《Peptides》1984,5(2):161-166
In view of the potential biological importance of VIP, we have begun to examine the regulation of its biosynthesis. For this purpose we have, as a first step, searched for an enriched source of VIP biosynthesis. By a combination of chromatographic procedures and radioimmunoassays we discovered an as yet unknown source for VIP production, namely a human buccal tumor, containing 0.67 +/- 0.05 ng VIP/micrograms protein which is greater than the richest source in brain (the cerebral cortex). Thus, we decided to use the tumor tissue for VIP-mRNA purification and characterization. To identify VIP-mRNA we are using as hybridization probes, synthetic oligodeoxynucleotides with relatively unambiguous nucleotide sequence complementary to the predicted VIP-mRNA sequence. These probes are synthesized, using the deoxynucleoside phosphoramidite approach, to a length of 17 bases each, and contain all the possible DNA sequences according to the genetic code. These specific probes are then radioactively labelled using the reaction catalyzed by the enzyme polynucleotide kinase and afterwards hybridized to mRNA, which had been resolved on denaturing agarose gels. Employing this approach, we identified a single putative VIP-mRNA band which was then partially purified by sucrose gradient centrifugation. Upon in vitro translation in a rabbit reticulocyte lysate cell free system, this mRNA was found to code for VIP immunoreactive proteins. In conclusion, our studies suggest the existence of high molecular weight precursors to VIP cross-reactive with anti-VIP antibodies, that are coded for by a partially purified mRNA containing VIP sequences.  相似文献   

11.
A peptide that cross reacted with N-terminal, but not C-terminal, antisera to vasoactive intestinal peptide (VIP) was isolated from extracts of intestine from the dogfish Scyliorhinus canicula. Microsequence analysis gave the structure His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Ser-Arg-Ile-Arg-Lys-Gln-Met-Ala-Val-Lys - Lys-Tyr-Ile-Asn-Ser-Leu-Leu-Ala-NH2. C-terminal amidation was determined by HPLC analysis of phenylthiocarbamyl amino acid derivatives after carboxypeptidase Y digestion. The peptide differs at five positions from the porcine octacosapeptide. Dogfish VIP was equipotent with its porcine counterpart in inhibiting binding of 125I-labelled VIP to guinea pig dispersed pancreatic acini, and in stimulating amylase secretion by the same preparation. The data indicate a strong conservation of VIP during evolution and permit identification of residues crucial for bioactivity.  相似文献   

12.
Vasoactive intestinal peptide (VIP), leucine-enkephalin (Leu-Enk), dynorphin (Dyn), neurotensin (NT) and substance P (SP) were measured by radioimmunoassay in lung and bronchoalveolar lavage (BAL) fluids of sham operated control rats and rats exposed to asbestos (5 and 10 mg, single intratracheal injections) for 3 and 6 months. Among these peptides, VIP, Leu-Enk and Dyn were the most abundant with 6 to 25 pmoles per g of lung tissue as compared with 0.95 to 1.2 pmoles per g for the other neuropeptides. In the presence of asbestos, VIP levels were selectively increased up to 2.7 times in lung tissue and 4.3 times in BAL fluids. On high pressure liquid chromatography (HPLC), the immunoreactive VIP coeluted with synthetic VIP. It is concluded that this selective increase may be involved in the pathogenesis of asbestos-related diseases. Exposure to asbestos causes chronic inflammatory reactions in the lung which may lead to fibrosis (1) and increase the incidence of pleuropulmonary cancers (2). Little is known concerning the biochemical changes responsible for the deleterious effects of asbestos on pulmonary functions. Previous studies have documented the vast complexity and diversity of lung biochemistry including its ability to metabolize lipids, inactivate certain enzymes and produce physiologically active amines (3-6). Recently, the lung has been recognized as an important source of peptidergic substances. VIP and SP were reported to be localized in nerve terminals of the main airways and in axons of the parasympathetic conducts (7-11). Other neuropeptides including bombesin (12, 13), calcitonin (13, 14) and Leu-Enk (13) were also detected in the lung. However, these latter peptides were mainly confined to diffuse granule-containing cells also known as APUD cells (amine precursor uptake and decarboxylation cells) (15). The role of these neuropeptides in normal lung function and in pulmonary diseases is unknown. However, it has recently been demonstrated that APUD cells proliferate in the rat lung following asbestos inhalation (16) and lung exposure to carcinogens (17, 18). In addition, Moody et al. (19) and Sorenson et al. (20) have observed high levels of bombesin in human cell lines derived from small-cell lung carcinoma. It was then of particular interest to verify if lung exposure to asbestos can induce some changes in the levels of various neuropeptides. In the present study, we report that VIP is significantly increased in the lungs and BAL fluids of rats exposed to asbestos while no significant change in the levels of Leu-Enk, Dyn, NT and SP is observed.  相似文献   

13.
The possibility that the vasoactive intestinal peptide (VIP) is a prohormone, which through enzymic fragmentation gives rise to shorter chains with, yet unknown, hormonal activities is suggested by the occurrence of two pairs of adjoining basic residues in its sequence. (A similar pattern can be recognized in proinsulin.) Synthesis of one of the hormone-candidates, -pyroglutamyl- -methionyl- -alanyl- -valyl- -lysyl- -lysyl- -tyrosyl- -leucyl- -asparaginyl- -seryl- - valyl- -leucyl- -threoninamide corresponding to the C-terminal 13-peptide sequences of chicken VIP is reported.  相似文献   

14.
The specific binding of vasoactive intestinal peptide (VIP) to murine lymphocytes was investigated. CD4 T cells from mesenteric lymph nodes (MLN) bound more 125I-VIP than did unseparated MLN lymphocytes at 37 degrees C, but not at 4 degrees C. The differences between the amount of 125I-VIP bound by the CD4 T cells and unseparated MLN lymphocytes at 37 degrees C depended upon a difference in the amount of the ligand that was internalized by the cells. The rate of insertion of unoccupied VIP receptors from the cytoplasm into the cell membrane (370 receptors/cell/min), the rate constants for internalization of ligand occupied VIP receptors (0.55 min-1) and unoccupied VIP receptors (0.11 min-1), and the rate constant for the elimination of internalized VIP (0.07 min-1) by CD4 T cells were evaluated. These results provide new understanding of the behaviour of VIP receptors on lymphocytes and indicate a mechanism by which CD4 T lymphocytes can homologously regulate their surface expression of VIP receptors in the presence of ambient VIP.  相似文献   

15.
Receptors for vasoactive intestinal peptide (VIP) have been characterized in rat lymphoid cells. The interaction of [125I] VIP with blood mononuclear cells was rapid, reversible, specific and saturable. At apparent equilibrium, the binding of [125I] VIP was competitively inhibited by native VIP in the 0.01-100 nM range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.050 +/- 0.009 nM and a low binding capacity (2.60 +/- 0.28 fmol/10(6) cells), and a low-affinity class with a Kd = 142 +/- 80 nM and a high binding capacity (1966 +/- 330 fmol/10(6) cells). Secretin, glucagon, insulin and somatostatin did not show any effect at a concentration as high as 100 nM. With spleen lymphoid cells, stoichiometric studies were performed. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.100 +/- 0.033 nM and a low binding capacity (4.60 +/- 1.07 fmol/10(6) cells), and low-affinity class with a Kd = 255 +/- 110 nM and high binding capacity (2915 +/- 1160 fmol/10(6) cells). With thymocytes, no binding was obtained under different conditions.  相似文献   

16.
P  l Wiik 《Regulatory peptides》1988,20(4):323-333
The effect of agonists on VIP receptor regulation has been investigated in mononuclear human blood leucocytes. VIP receptor number and affinity, as well as VIP-stimulated cyclic AMP accumulation were measured after pretreatment with VIP, PHM-27 or secretin. Pretreatment for 30 min with 0.1 μM VIP caused 28% (S.E.M. = 15) reduction in specific binding, and 52% (S.E.M. = 12) reduction in cyclic AMP accumulation, while 3 h of pretreatment caused 59% (S.E.M. = 10) and 68% (S.E.M. = 12) reduction. Only VIP concentrations at the nanomolar level and higher were shown to have any effect. Bmax of the high-affinity receptor was reduced by 66% (S.E.M. = 8) after 30 min, and 95% (S.E.M. = 3) after 3 h of exposure to 0.1 μM VIP. No significant change was observed in receptor affinity, in Bmax of the low-affinity receptor, in ED50, or in ED100 of VIP-stimulated cyclic AMP accumulation. Pretreatment with PHM-27 (0.1 μM, 3 h) caused 24% reduction in [125I]VIP binding and 25% reduction in cyclic AMP accumulation, while no effect was detected after pretreatment with secretin (0.1 μM, 3 h).  相似文献   

17.
The human colon adenocarcinoma cell line HT-29 in culture exhibits a cyclic AMP production system highly sensitive to vasoactive intestinal peptide (VIP), making HT-29 cells a unique cultured cell system for studying the mechanism of VIP action [Laburthe, Rousset, Boissard, Chevalier, Zweibaum & Rosselin (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2772-2775]. The quantitative characteristics of VIP receptors in HT-29 cells and their structural requirement and molecular size were studied. 125I-labeled VIP bound in a time-dependent manner to HT-29 cell homogenates. At equilibrium (60 min incubation at 30 degrees C), unlabelled VIP in the 0.01-10 nM concentration range competed with 125I-VIP for binding to cell homogenates. Scatchard analysis of binding data gave a straight line, indicating that VIP bound to a single population of sites with a KD of 0.12 +/- 0.02 nM and a capacity of 120 +/- 9 fmol/mg of protein. The structural requirement of these receptors was studied with peptides structurally related to VIP, either natural or synthetic. Several peptides inhibited 125I-VIP binding to HT-29 cell homogenates with the following order of potency, which is typical of the human VIP receptor: VIP (IC50 = 0.1 nM) greater than VIP-(2-28)-peptide (IC50 = 13 nM) greater than human growth hormone releasing factor (IC50 = 56 nM) greater than peptide histidine isoleucine amide (IC50 = 80 nM) greater than secretin (IC50 greater than 10 000 nM). To characterize the molecular component(s) of the VIP receptor in HT-29 cells, 125I-VIP was covalently bound to cell homogenates by using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulphate/polyacrylamide-gel autoradiographic studies of affinity-labelled cell homogenates revealed two major bands, corresponding to 125I-VIP-protein complexes of Mr 66 000 and 16 000. The labelling of the Mr-66 000 component was specific, since it was abolished by native VIP, whereas that of the Mr-16 000 component was not. Densitometric scanning of autoradiographs indicated that the labelling of the Mr-66 000 complex was inhibited by low VIP concentrations in the 0.1-10 nM range (IC50 = 0.6 nM), but was unaffected by 1 microM-glucagon or octapeptide of cholecystokinin. It was also decreased by VIP-(2-28)-peptide with a potency 1% that of VIP. Assuming that one molecule of 125I-VIP bound per molecule of protein, one protein of Mr 63 000 was identified as a component of the VIP receptor in HT-29 cells.  相似文献   

18.
Porcine VIP was synthesized from three segments. The segments, VIP(1-6), VIP(7-13), and VIP(14-28), were synthesized via the Repetitive Excess Mixed Anhydride (REMA) method. The low solubility of the C-terminal segment was greatly improved by a temporary substitution of Asn28 by a beta-t-butyl aspartic acid ester. The segments VIP(1-6) and VIP(7-13) were purified by HPLC and coupled via the mixed anhydride method. The product was purified by gel filtration. VIP was synthesized from VIP(1-13) and VIP(14-28) by the same procedure. After deprotection, Met17-sulfoxide reduction, and purification by ion-exchange chromatography, the product was found to have the expected amino acid composition and biological potency. A HPLC purified sample was compared with several commercial preparations of varying purity.  相似文献   

19.
Summary Using antibodies against pure porcine VIP in immunoperoxidase and immunofluorescence tests, VIP-immunoreactive cells have been detected in the pancreas—especially in the islets—and gastrointestinal mucosa of the dog, guinea-pig and man. VIP immunoreactive cells were widely distributed in these tissues, never being numerous at any site. Some parallelism has been noted between such cells and ultrastructurally identified D1 cells of the pancreas and gastrointestinal mucosa. The presence of VIP cells in normal pancreas may help explain the occurrence of pancreatic endocrine tumors producing VIP.  相似文献   

20.
Intramuscular injection of synthetic VIP (200 micrograms) resulted in a rapid increase in plasma prolactin (PRL) concentrations in normal women, which was accompanied by the 4- to 7-fold increase in plasma VIP levels. Mean (+/- SE) peak values of plasma PRL obtained 15 min after the injection of VIP were higher than those of saline control (28.1 +/- 6.7 ng/ml vs. 11.4 +/- 1.6 ng/ml, p less than 0.05). Plasma growth hormone (GH) and cortisol levels were not affected by VIP in normal subjects. VIP injection raised plasma PRL levels (greater than 120% of the basal value) in all of 5 patients with prolactinoma. In 3 of 8 acromegalic patients, plasma GH was increased (greater than 150% of the basal value) by VIP injection. In the in vitro experiments, VIP (10(-8), 10(-7) and 10(-6) M) stimulated PRL release in a dose-related manner from the superfused pituitary adenoma cells obtained from two patients with prolactinoma. VIP-induced GH release from the superfused pituitary adenoma cells was also shown in 5 out of 6 acromegalic patients. VIP concentrations in the CSF were increased in most patients with hyperprolactinemia and a few cases with acromegaly. These findings indicate that VIP may play a role in regulating PRL secretion in man and may affect GH secretion from pituitary adenoma in acromegaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号