首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant proteins encoded by the human papillomavirus type 6b (HPV6b) L1 open reading frame react with sera from patients with condylomata acuminata and also react with rabbit antiserum raised against sodium dodecyl sulfate-disrupted bovine papillomavirus type 1 (BPV1) virions. To map the immunoreactive epitopes, a series of procaryotic expression plasmids was made which contained a nested set of 3' to 5' deletions in the HPV6b L1 open reading frame. The deleted plasmids expressed a set of carboxy to amino terminus truncated fusion proteins. Regions containing the immunoreactive epitopes were mapped by determining which of the deleted fusion proteins retained reactivity with sera in Western immunoblot assays. The coding sequence for a human antibody-reactive linear epitope mapped between HPV6b nucleotide coordinates 7045 and 7087, and the rabbit anti-BPV1-reactive epitope coding sequence mapped between coordinates 6377 and 6454. Synthetic peptides derived from the epitope mapping were reacted with sera in enzyme-linked immunosorbent assay. Human sera reacted with synthetic peptide QSQAITCQKPTPEKEKPDPYK (HPV6b L1 amino acids 417 through 437). Rabbit anti-BPV1 and rabbit antisera raised against HPV16 L1 recombinant proteins reacted with the synthetic peptide DGDMVDTGFGAMNFADLQTNKSDVPIDI (HPV6b L1 amino acids 193 through 220). Human sera which reacted with HPV6b L1 fusion proteins cross-reacted with an HPV11 L1 fusion protein but did not react with fusion proteins encoded by HPV1a, HPV16, or HPV18. Rabbit anti-BPV1 reacted with L1 fusion proteins encoded by all of these HPV types. In contrast to the type-common (rabbit anti-BPV1-reactive) epitope, the human antibody-reactive epitope appears to be relatively HPV type specific.  相似文献   

2.
Human cervical carcinoma cell lines that harbor human papillomavirus (HPV) have been reported to retain selectively and express HPV sequences which could encode viral E6 and E7 proteins. The potential importance of HPV E6 to tumors is suggested further by the observation that bovine papillomavirus (BPV) E6 can induce morphologic transformation of mouse cells in vitro. To identify HPV E6 protein, a polypeptide encoded by HPV-16 E6 was produced in a bacterial expression vector and used to raise antisera. The antisera specifically immunoprecipitated the predicted 18-kd protein in two human carcinoma cell lines known to express HPV-16 RNA and in mouse cells morphologically transformed by HPV-16 DNA. The 18-kd E6 protein was distinct from a previously identified HPV-16 E7 protein. The HPV-16 E6 antibodies were found to be type specific in that they did not recognize E6 protein in cells containing HPV-18 sequences and reacted weakly, if at all, to BPV E6 protein. The results demonstrate that human tumors containing HPV-16 DNA can express an E6 protein product. They are consistent with the hypothesis that E6 may contribute to the transformed phenotype in human cervical cancers that express this protein.  相似文献   

3.
The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105-RB). Similar to the E7 protein of HPV-16, the E7 proteins of HPV-18, HBV-6b and HPV-11 were found to associate with p105-RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV-16 and HPV-18) formed complexes with p105-RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105-RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV-1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105-RB. The amino acid sequences of the HPV-16 E7 protein involved in complex formation with p105-RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105-RB. Furthermore, the HPV-16 E7-p105-RB complex was detected in an HPV-16-transformed human keratinocyte cell line.  相似文献   

4.
The complete nucleotide sequence of the circular double-stranded DNA of the genital human papillomavirus type 6b (HPV6b) comprising 7902 bp was determined and compared with the DNA sequences of human papillomavirus type 1a (HPV1a) and bovine papillomavirus type 1 (BPV1). All major open reading frames are located on one DNA strand only. Their arrangement reveals that the genomic organization of HPV6b is similar to that of HPV1a and BPV1. The putative early region includes two large open reading frames E1 and E2 with marked amino acid sequence homologies to HPV1a and BPV1 which are flanked by several smaller frames. The internal part of E2 completely overlaps with another open reading frame E4. The putative late region contains two large open reading frames L1 and L2. The L1 amino acid sequences are highly conserved among analyzed papillomavirus types. By sequence comparison, potential promoter, splicing and polyadenylation signals can be localized in HPV6b DNA suggesting possible mechanisms of genital papillomavirus gene expression.  相似文献   

5.
To characterize epitopes on human papillomavirus (HPV) virus-like particles (VLPs), a panel of mutated HPV-16 VLPs was created. Each mutated VLP had residues substituted from HPV-31 or HPV-52 L1 sequences to the HPV-16 L1 backbone. Mutations were created on the HPV-31 and -52 L1 proteins to determine if HPV-16 type-specific recognition could be transferred. Correct folding of the mutated proteins was verified by resistance to trypsin digestion and by binding to one or more conformation-dependent monoclonal antibodies. Several of the antibodies tested were found to bind to regions already identified as being important for HPV VLP recognition (loops DE, EF, FG, and HI). Sequences at both ends of the long FG loop (amino acids 260 to 290) were required for both H16.V5 and H16.E70 reactivity. A new antibody-binding site was discovered on the C-terminal arm of L1 between positions 427 and 445. Recognition of these residues by the H16.U4 antibody suggests that this region is surface exposed and supports a recently proposed molecular model of HPV VLPs.  相似文献   

6.
Y Tomita  H Shirasawa    B Simizu 《Journal of virology》1987,61(8):2389-2394
The human papillomavirus (HPV) genome contains two large open reading frames (ORFs), designated L1 and L2. To characterize the antigenic properties of the L1 ORF-encoded proteins, we cloned the L1 ORFs of HPV6b and HPV16 in plasmids, and these were expressed in Escherichia coli. First, the HPV6b DNA, representing 85.2% of the L1 ORF, was cloned in pUC19 and expressed in E. coli JM83 and RB791 as a 160,000-molecular-weight (160K) fusion protein with E. coli beta-galactosidase (6bL1/beta-gal). Second, the HPV16 DNA, representing 89.8% of the L1 ORF, was cloned in pKK233-2 and expressed as a 56K protein (16L1) in strain RB791. Both the 6bL1/beta-gal and 16L1 proteins cross-reacted with anti-bovine papillomavirus type 1 (BPV1) antibody raised against disrupted BPV1 particles. An antibody raised against the 6bL1/beta-gal fusion protein reacted with the 16L1 protein and also with native papillomavirus antigens in human genital condyloma and bovine fibropapilloma tissues, as determined by biotin-streptavidin staining. Furthermore, the anti-6bL1/beta-gal antibody recognized a 54K protein which seemed to be a major capsid protein of BPV1 and also a 56K protein of biopsies harboring HPV6 or HPV11. From these results we concluded that the papillomavirus L1 gene product contains genus-specific (common) antigens and that the HPV6 and HPV11 L1 genes specify the 56K capsid protein.  相似文献   

7.
Human papillomavirus type 16 (HPV16) is the primary etiologic agent of cervical carcinoma, whereas bovine papillomavirus type 1 (BPV1) causes benign fibropapillomas. However, the capsid proteins, L1 and L2, of these divergent papillomaviruses exhibit functional conservation. A peptide comprising residues 1 to 88 of BPV1 L2 binds to a variety of cell lines, but not to the monocyte-derived cell line D32, and blocks BPV1 infection of mouse C127 cells. Residues 13 to 31 of HPV16 L2 and BPV1 L2 residues 1 to 88 compete for binding to the cell surface, and their binding, unlike that of HPV16 L1/L2 virus-like particles, is unaffected by heparinase or trypsin pretreatment of HeLa cells. A fusion of HPV16 L2 peptide 13-31 and GFP binds (K(d), approximately 1 nM) to approximately 45,000 receptors per HeLa cell. Furthermore, mutation of L2 residues 18 and 19 or 21 and 22 significantly reduces both the ability of the HPV16 L2 13-31-GFP fusion protein to bind to SiHa cells and the infectivity of HPV16 pseudovirions. Antibody to BPV1 L2 peptides comprising residues 115 to 135 binds to intact BPV1 virions, but fails to neutralize at a 1:10 dilution. However, deletion of residues 91 to 129 from L2 abolishes the infectivity of BPV1, but not their binding to the cell surface. In summary, L2 residues 91 to 129 contain epitopes displayed on the virion surface and are required for infection, but not virion binding to the cell surface. Upon the binding of papillomavirus to the cell surface, residues 13 to 31 of L2 interact with a widely expressed, trypsin- and heparinase-resistant cell surface molecule and facilitate infection.  相似文献   

8.
Human papillomavirus (HPV), particularly type 16 (HPV-16), is present in more than 99% of cervical cancers. The HPV oncoproteins E6 and E7 are constantly expressed and therefore represent ideal targets for HPV vaccine development. We previously developed DNA vaccines encoding calreticulin (CRT) linked to HPV-16 E7 and generated potent E7-specific CD8(+) T-cell immune responses and antitumor effects against an E7-expressing tumor. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a DNA vaccine encoding CRT linked to E6 (CRT/E6). Our results indicated that the CRT/E6 DNA vaccine, but not a wild-type E6 DNA vaccine, generated significant E6-specific CD8(+) T-cell immune responses in vaccinated mice. Mapping of the immunodominant epitope of E6 revealed that an E6 peptide comprising amino acids (aa) 48 to 57 (E6 aa48-57), presented by H-2K(b), is the optimal peptide and that the region of E6 comprising aa 50 to 57 represents the minimal core sequence required for activating E6-specific CD8(+) T lymphocytes. We also demonstrated that E6 aa48-57 contains cytotoxic T-lymphocyte epitopes naturally presented by E6-expressing TC-1 cells. Vaccination with a CRT/E6 but not a CRT/mtE6 (lacking aa 50 to 57 of E6) DNA vaccine could protect vaccinated mice from challenge with E6-expressing TC-1 tumors. Thus, our data indicate that E6 aa48-57 contains the immunodominant epitope and that a CRT/E6 DNA vaccine may be useful for control of HPV infection and HPV-associated lesions.  相似文献   

9.
M Conrad  V J Bubb    R Schlegel 《Journal of virology》1993,67(10):6170-6178
The human papillomavirus (HPV) E5 proteins are predicted from DNA sequence analysis to be small hydrophobic molecules, and the HPV type 6 (HPV-6) and HPV-11 E5 proteins share several structural similarities with the bovine papillomavirus type 1 (BPV-1) E5 protein. Also similar to the BPV-1 E5 protein, the HPV-6 and HPV-16 E5 proteins exhibit transforming activity when assayed on NIH 3T3 and C127 cells. In this study, we expressed epitope-tagged E5 proteins from both the "low-risk" HPV-6 and the "high-risk" HPV-16 in order to permit their immunologic identification and biochemical characterization. While the HPV-6 and HPV-16 E5 proteins fail to form disulfide-linked dimers and oligomers, they did resemble the BPV-1 E5 protein in their intracellular localization to the Golgi apparatus, endoplasmic reticulum, and nuclear membranes. In addition, the HPV E5 proteins also bound to the 16-kDa pore-forming protein component of the vacuolar ATPase, a known characteristic of the BPV-1 E5 protein. These studies reveal a common intramembrane localization and potential cellular protein target for both the BPV and HPV E5 proteins.  相似文献   

10.
We report a system for generating infectious papillomaviruses in vitro that facilitates the analysis of papillomavirus assembly, infectivity, and serologic relatedness. Cultured hamster BPHE-1 cells harboring autonomously replicating bovine papillomavirus type 1 (BPV1) genomes were infected with recombinant Semliki Forest viruses that express the structural proteins of BPV1. When plated on C127 cells, extracts from cells expressing L1 and L2 together induced numerous transformed foci that could be specifically prevented by BPV neutralizing antibodies, demonstrating that BPV infection was responsible for the focal transformation. Extracts from BPHE-1 cells expressing L1 or L2 separately were not infectious. Although Semliki Forest virus-expressed L1 self-assembled into virus-like particles (VLPs), viral DNA was detected in particles only when L2 was coexpressed with L1, indicating that genome encapsidation requires L2. Expression of human papillomavirus type 16 (HPV16) L1 and L2 together in BPHE-1 cells also yielded infectious virus. These pseudotyped virions were neutralized by antiserum to HPV16 VLPs derived from European (114/K) or African (Z-1194) HPV16 variants but not by antisera to BPV VLPs, to a poorly assembling mutant HPV16 L1 protein, or to VLPs of closely related genital HPV types. Extracts from BPHE-1 cells coexpressing BPV L1 and HPV16 L2 or HPV16 L1 and BPV L2 were not infectious. We conclude that (i) mouse C127 cells express the cell surface receptor for HPV16 and are able to uncoat HPV16 capsids; (ii) if a papillomavirus DNA packaging signal exists, then it is conserved between the BPV and HPV16 genomes; (iii) functional L1-L2 interaction exhibits type specificity; and (iv) protection by HPV virus-like particle vaccines is likely to be type specific.  相似文献   

11.
We have previously reported that the most common human serum immunoglobulin G antibody reactivities to human papillomavirus type 16 and type 18 (HPV16 and HPV18)-encoded proteins are directed against the minor capsid proteins (HPV16 L2 and HPV18 L2) and to the E7 protein of HPV16 (S. A. Jenison, X.-P. Yu, J. M. Valentine, L. A. Koutsky, A. E. Christiansen, A. M. Beckmann, and D. A. Galloway, J. Infect. Dis. 162:60-69, 1990). In this study, the antibody-reactive segments of the HPV16 E7, HPV16 L2, and HPV18 L2 polypeptides were mapped by using nested sets of deleted recombinant proteins. A single major immunoreactive region was identified in the HPV16 E7 polypeptide between amino acids (aa) 21 and 34 (DLYCYE-QLNDSSEE). In contrast, three distinct immunoreactive regions of the HPV16 L2 polypeptide were present in the segment between aa149 and aa204, and three distinct immunoreactive regions of the HPV18 L2 polypeptide were present in the segment between aa110 and aa211. With the exception of one serum sample, serum immunoglobulin G antibodies which reacted with HPV16 L2 polypeptides or with HPV18 L2 polypeptides were not cross-reactive.  相似文献   

12.
Human papillomavirus (HPVs) infect the genital epithelium and are found in proliferative lesions ranging from benign condylomata to invasive carcinomas. The immunological response to these infections is poorly understood because of the lack of purified viral antigens. In this study, bacterially derived fusion proteins expressing segments of all the major open reading frames (ORFs) of HPV type 6b (HPV-6b) have been used in Western blot (immunoblot) assays to detect antibodies directed against HPV-encoded proteins. The most striking reactivities present in sera from patients with genital warts were to the HPV-6b L1 ORF protein and, to a lesser extent, to the HPV-6b L2 ORF protein. Two cases of reactivity to HPV-6b E2 ORF were observed, but no reactivities were seen with other HPV-6b constructs. Two sera reacted with the HPV-16 L2 fusion protein, and two sera reacted with the HPV-16 E4 protein. The antibodies directed against the HPV-6b fusion proteins showed no cross-reactivity with comparable regions of the HPV-16 ORFs. This assay provides a useful approach for further studies of HPV serology.  相似文献   

13.
Papillomaviruses are attractive models for studying the molecular evolution of DNA viruses because of the large number of isolates that exhibit genomic diversity and host species and tissue specificity. To examine their relationship, we selected two amino acid sequences, one of 52 residues within the early gene E1 and the other of 44 residues within the late gene L1, which allowed insertion- and deletion-free alignment of all accessible papillomavirus sequences. We constructed phylogenetic trees from the amino acid and corresponding nucleotide sequences from 28 published and 20 newly determined animal and human papillomavirus (HPV) genomic sequences by using distance matrix, maximum-likelihood, and parsimony methods. The trees agreed in all important topological aspects. One major branch with two clearly separated clusters contained 11 HPV types associated with epidermodysplasia verruciformis. A second major branch had all the papillomaviruses involved in genital neoplasia and, in distant relationship, the cutaneous papillomaviruses HPV type 2a (HPV-2a), HPV-3, and HPV-10 as well as the "butcher's" papillomavirus HPV-7 and two simian papillomaviruses. Four artiodactyl (even-toed hoofed mammal) papillomaviruses, the cottontail rabbit papillomavirus, and avian (chaffinch) papillomavirus type 1 formed a third major branch. Last, four papillomaviruses exhibited little affinity to any of these three branches; these were the cutaneous types HPV-1a, HPV-4, and HPV-41 and B-group bovine papillomavirus type 4. The phylogeny suggests that some branches of papillomavirus evolution are restricted to particular target tissues and that a general process of long-term papillomavirus-host coevolution has occurred. This latter hypothesis is still conjectural because of bias in the current data base for human types and the paucity of animal papillomavirus sequences. The comparison of evolutionary distances for the most closely related types with those of 28 subtypes and variants of HPV-2, HPV-5, HPV-6, HPV-16, and HPV-18 supports the type as a natural taxonomic unit, with subtypes and variants being expressions of minor intratype genomic diversity similar to that found in the natural populations of all biological species. An exception to this seems to be HPV-2c, which has an evolutionary distance from HPV-2a of the intertype magnitude and may eventually have to be regarded as a distinct type. We describe an experimental approach that estimates the taxonomic and phylogenetic positions of newly identified papillomaviruses without viral isolation and complete genomic sequencing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The major capsid protein L1 of human papillomavirus (HPV) contains the immunodominant neutralization epitopes of the virus and can auto-assembles to form virus-like particles (VLPs). Therefore, HPV L1 capsid proteins have been well investigated as potential vaccine candidates. To express large quantities of human papillomavirus type 16 (HPV-16) L1 in Escherichia coli (E. coli), The HPV-16 L1 gene was cloned into pGEX-4T-1, resulting in only low expression levels of HPV-16 L1 in E. coli. The first 129 nucleotides of the 5' end of the L1 gene, which contains the major inhibitory RNA element, were then deleted. The deletion RNA was efficiently translated, resulting in about 2-fold higher L1 accumulation in E. coli. The N-terminal amino-acid deletion did not affect the ability of L1 to auto-assemble in E. coli and form small VLPs.  相似文献   

15.
16.
Both the Human papillomavirus (HPV) major (L1) and minor (L2) capsid proteins have been well investigated as potential vaccine candidates. The L1 protein first oligomerizes into pentamers, and these capsomers assemble into virus-like particles (VLPs) that are highly immunogenic. Here we examine the potential of using HPV type 16 (HPV-16) L1 subunits to display a well-characterized HPV-16 L2 epitope (LVEETSFIDAGAP), which is a common-neutralizing epitope for HPV types 6 and 16, in various regions of the L1 structure. The L2 sequence was introduced by PCR (by replacing 13 codons) into sequences coding for L1 surface loops D-E (chideltaC-L2), E-F (chideltaA-L2), and an internal loop C-D (chideltaH-L2); into the h4 helix (chideltaF-L2); and between h4 and beta-J structural regions (chideltaE-L2). The chimeric protein product was characterized using a panel of monoclonal antibodies (MAbs) that bind to conformational and linear epitopes, as well as a polyclonal antiserum raised to the L2 epitope. All five chimeras reacted with the L2 serum. ChideltaA-L2, chideltaE-L2, and chideltaF-L2 reacted with all the L1 antibodies, chideltaC-L2 did not bind H16:V5 and H16:E70, and chideltaH-L2 did not bind any conformation-dependent MAb. The chimeric particles elicited high-titer anti-L1 immune responses in BALB/c mice. Of the five chimeras tested only chideltaH-L2 did not elicit an L2 response, while chideltaF-L2 elicited the highest L2 response. This study provides support for the use of PV particles as vectors to deliver various epitopes in a number of locations internal to the L1 protein and for the potential of using chimeric PV particles as multivalent vaccines. Moreover, it contributes to knowledge of the structure of HPV-16 L1 VLPs and their derivatives.  相似文献   

17.
Human papillomaviruses (HPVS) that infect the genital tract can be divided into two groups: high-risk HPV types, such as HPV 16 and HPV 18, are associated with cancer, low-risk HPV types, such as HPV 6, are associated with benign warts. In both high-risk and low-risk HPV types, the papillomavirus E2 protein binds to four sites within the viral long control region (LCR) and regulates viral gene expression. Here, we present the crystal structure of the minimal DNA-binding domain (DBD) from the HPV 6 E2 protein. We show that the HPV 6 E2 DBD is structurally more similar to the HPV 18 and bovine papillomavirus type 1 (BPV1) E2 proteins than it is to the HPV 16 E2 protein. Using gel retardation assays, we show that the hierarchy of E2 sites within the HPV 16 and HPV 6 LCRs are different. However, despite these differences in structure and site preference, both the HPV 16 and 6 E2 DBDs recognise an extended version of the consensus E2 binding site derived from studies of the BPV1 E2 protein. In both cases, the preferred binding site is 5'AACCGN(4)CGGTT3', where the additional flanking base-pairs are in bold and N(4) represents a four base-pair central spacer. Both of these HPV proteins bind preferentially to E2 sites that contain an A:T-rich central spacer. We show that the preference for an A:T-rich central spacer is due, at least in part, to the need to adopt a DNA conformation that facilitates protein contacts with the flanking base-pairs.  相似文献   

18.
19.
The serum samples and corresponding cervical swabs were collected from 50 women with genital warts from Tianjin city, China. The neutralizing antibodies against HPV-16, -18, -58, -45, -6 and -11 in serum samples were tested by using pseudovirus-based neutralization assays and HPV DNAs in cervical swabs were also tested by using a typing kit that can detect 21 types of HPV. The results revealed that 36% (18/50) of sera were positive for type-specific neutralizing antibodies with a titer range of 160–2560, of which 22%(11/50), 12%(6/50), 10%(5/50), 4%(2/50), 4%(2/50) and 2%(1/50) were against HPVs -6, -16, -18, -58, -45 and -11, respectively. Additionally, 60% (30/50) of samples were HPV DNA-positive, in which the most common types detected were HPV-68(18%), HPV-16(14%), HPV-58(12%), HPV-33(8%) and HPV-6, HPV-11, HPV-18 and HPV-52 (6% each). The concordance between HPV DNA and corresponding neutralizing antibodies was 56% (28/50) with a significant difference (P<0.05). The full-length sequences of five HPV types (HPV -42, -52, -53, -58 and -68) were determined and exhibited 98%–100% identities with their reported genomes. The present data may have utility for investigating the natural history of HPV infection and promote the development of HPV vaccines.  相似文献   

20.
V Band  S Dalal  L Delmolino    E J Androphy 《The EMBO journal》1993,12(5):1847-1852
Normal mammary epithelial cells are efficiently immortalized by the E6 gene of human papillomavirus (HPV)-16, a virus commonly associated with cervical cancers. Surprisingly, introduction of the E6 gene from HPV-6, which is rarely found in cervical cancer, or bovine papillomavirus (BPV)-1, into normal mammary cells resulted in the generation of immortal cell lines. The establishment of HPV-6 and BPV-1 E6-immortalized cells was less efficient and required a longer period in comparison to HPV-16 E6. These HPV-6- and BPV-1 E6-immortalized cells demonstrated dramatically reduced levels of p53 protein by immunoprecipitation. While the half-life of p53 protein in normal mammary epithelial cells was approximately 3 h, it was reduced to approximately 15 min in all the E6-immortalized cells. These results demonstrate that the E6 genes of both high-risk and low-risk papilloma viruses immortalize human mammary epithelial cells and induce a marked degradation of p53 protein in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号