首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell surface expression of the human cytomegalovirus (HCMV) major envelope glycoprotein complex, gp55-116 (gB), was studied by using monoclonal antibodies and an HCMV gp55-116 (gB) recombinant vaccinia virus. HCMV-infected human fibroblasts and recombinant vaccinia virus-infected HeLa cells expresses three electrophoretically distinct proteins of Mr 170,000, 116,000, and 55,000 on their surface. These species have been previously identified within infected cells and purified virions. Two unique neutralizing epitopes were shown to be present on the cell surface gp55-116 (gB). Utilizing HeLa cells infected with the gp55-116 recombinant vaccinia virus as a specific immunosorbent, we have shown that approximately 40 to 70% of the total serum virus-neutralizing activity of a group of individuals with past HCMV infections was directed against this single envelope glycoprotein. The implications of this finding for vaccine development are discussed.  相似文献   

2.
The envelope glycoprotein of HIV-I in infected, cultured human T cells is synthesized as a precursor of apparent Mr 160 kDa (gp160) and is cleaved to two glycoproteins, gp120 and gp41, which are the mature envelope glycoproteins in the virus. Neither the temporal and spatial features of glycosylation nor the oligosaccharide processing and proteolytic cleavage of the envelope glycoprotein are well understood. To understand more about these events, we investigated the glycosylation and cleavage of the envelope glycoproteins in the CD4+ human cell line, Molt-3, persistently infected with HIV-I (HTLV IIIB). The carbohydrate analysis of gp160 and gp120 and the behavior of the glycoproteins and glycopeptides derived from them on immobilized lectins demonstrate that both of these glycoproteins contain complex- and high-mannose-type Asn-linked oligosaccharides. In addition, the N-glycanase-resistant oligosaccharides of gp120 were found to contain N-acetyl-galactosamine, a common constituent of Ser/Thr-linked oligosaccharides. Pulse-chase analysis of the conversion of [35S]cysteine-labeled gp160 showed that in Molt-3 cells it takes about 2 h for gp120 to arise with a half-time of conversion of about 5 h. At its earliest detectable occurrence, gp120 was found to contain complex-type Asn-linked oligosaccharides. Taken together, these results indicate that proteolytic cleavage of gp160 to gp120 and gp41 occurs either within the trans-Golgi or in a distal compartment.  相似文献   

3.
Sulfation is a posttranslational modification of proteins which occurs on either the tyrosine residues or the carbohydrate moieties of some glycoproteins. In the case of secretory proteins, sulfation has been hypothesized to act as a signal for export from the cell. We have shown that the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein precursor (gp160) as well as the surface (gp120) and transmembrane (gp41) subunits can be specifically labelled with 35SO42-. Sulfated HIV-1 envelope glycoproteins were identified in H9 cells infected with the IIIB isolate of HIV-1 and in the cell lysates and culture media of cells infected with vaccinia virus recombinants expressing a full-length or truncated, secreted form of the HIV-1 gp160 gene. N-glycosidase F digestion of 35SO4(2-)-labelled envelope proteins removed virtually all radiolabel from gp160, gp120, and gp41, indicating that sulfate was linked to the carbohydrate chains of the glycoprotein. The 35SO42-label was at least partially resistant to endoglycosidase H digestion, indicating that some sulfate was linked to complex carbohydrates. Brefeldin A, a compound that inhibits the endoplasmic reticulum to Golgi transport of glycoproteins, was found to inhibit the sulfation of the envelope glycoproteins. Envelope glycoproteins synthesized in cells treated with chlorate failed to incorporate 35SO42-. However, HIV glycoproteins were still secreted from cells in the presence of chlorate, indicating that sulfation is not a requirement for secretion of envelope glycoproteins. Sulfation of HIV-2 and simian immunodeficiency virus envelope glycoproteins has also been demonstrated by using vaccinia virus-based expression systems. Sulfation is a major determinant of negative charge and could play a role in biological functions and antigenic properties of HIV glycoproteins.  相似文献   

4.
The processing pathway of the major envelope glycoprotein complex, gp55-116 (gB), of human cytomegalovirus was studied using inhibitors of glycosylation and endoglycosidases. The results of these studies indicated that the mature gp55-116 is synthesized by the addition of both simple and complex N-linked sugars to a nonglycosylated precursor of estimated Mr 105,000. In a rapid processing step, the Mr 105,000 precursor is glycosylated to a protein of Mr 150,000 (gp150) which contains only endoglycosidase H-sensitive sugar linkages. The gp150 is then processed relatively slowly to a Mr 165,000 to 170,000 species (gp165-170), which is then cleaved to yield the mature gp55-116. Monensin prevented the final processing steps of the gp150, including cleavage, suggesting that transport through the Golgi apparatus is required for complete processing. Digestion of the intracellular forms of this complex as well as the virion forms confirmed the above findings and indicated that the mature virion form of gp55 contains 8,000 daltons of N-linked sugars. The virion gp116 contains some 52,000 to 57,000 daltons of N-linked carbohydrates and approximately 5,000 daltons of O-linked sugars.  相似文献   

5.
In pulse-chase experiments, the three major Epstein-Barr virus envelope glycoproteins, gp350/300, gp250/200, and gp85, were shown to be synthesized from separate precursors of 190,000, 160,000, and 83,000 daltons, respectively. These three pulse-labeled species were chased into the mature forms of the glycoproteins between 1 and 3 h after transfer to nonradioactive medium. Digestion of precursor forms with endo-beta-N-acetylglucosaminidase H (endo H) yielded polypeptides of 160,000, 120,000, and 75,000 daltons. Comparison of these results with those from experiments with tunicamycin, which specifically blocks N-linked glycosylation, indicated that some other post-translational modification(s), probably O-linked glycosylation, contributes about 100,000 and 60,000 daltons of apparent molecular mass to gp350/300 and gp250/200, respectively. Experiments with endo H showed that mature gp350/300 and gp250/200 contain complex-type (endo H-resistant) N-linked glycosyl chains, whereas gp85 contains both high-mannose (endo H-sensitive)- and complex-type oligosaccharides. In contrast to the results obtained with the three envelope glycoproteins, no precursor forms of the two unglycosylated protein, p160 (the major Epstein-Barr virus capsid antigen) and p140 (an envelope protein), were detected. The partial proteolytic maps of gp350/300 and gp250/200 were quite similar, suggesting that polypeptide sequence homology could account for at least part of the observed serological cross-reactivity of the two proteins. Taken together, these results demonstrate that the polypeptide portions of gp350/300 and gp250/200 are closely related but not derived from a common precursor. Furthermore, the polypeptide portions comprise half or less of the apparent molecular weight of the mature glycoproteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

6.
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.  相似文献   

7.
We have shown that enzymatic removal of N-linked glycans from human immunodeficiency virus type 1 (HIV-1) recombinant envelope glycoproteins gp160 and gp120 produced in BHK-21 cells did not significantly reduce their ability to bind to CD4, the cellular receptor for the virus. Because recombinant proteins may behave differently from proteins present on virions, we investigated whether such viral envelope glycoproteins either in a purified form or present on viral particles could be deglycosylated by treatment with an endoglycosidase F-N-glycanase mixture which cleaves all accessible glycan moieties. Endoglycosidase analysis of the carbohydrate composition of purified viral gp120 (vgp120) indicated a glycosylation pattern similar to that for recombinant gp120 (rgp120), and treatment with endoglycosidase F-N-glycanase resulted in comparable molecular weight (MW) reduction for both molecules. Similarly, after immunoblotting of the deglycosylated viral preparation, the characteristic 160- and 120-kilodalton (kDa) bands were replaced by 90- and 60-kDa bands, respectively. The apparent MW of gp41 shifted to 35 kDa. These results are consistent with complete deglycosylation. The immunoreactive conformation of envelope glycoproteins remained unaltered after deglycosylation: they were recognized to the same extent by specific human polyclonal or mouse monoclonal antibodies, and no proteolysis of viral proteins occurred during enzymatic treatment. Deglycosylation of vgp120 resulted in a less than 10-fold reduction of the ability to bind to CD4, presented either in a soluble form or at the cell membrane. In addition, deglycosylation significantly reduced, but did not abolish, HIV-1 binding to and infectivity of CD4+ cells as determined, respectively, by an indirect immunofluorescence assay and a quantitative dose-response infection assay. Taken together, these results indicate that removal of glycans present on mature envelope glycoproteins of HIV-1 diminishes but does not abolish either virus binding to CD4 or its capacity to infect CD4+ cells.  相似文献   

8.
The disulfide-linked glycoprotein B (gB; gp55-116) complex of human cytomegalovirus represents the most abundant and immunogenic component of the virion envelope. We have studied the oligomerization and transport of this molecule, using a series of murine monoclonal antibodies. Our results indicated that oligomerization of this molecule occurred shortly after its synthesis, with a half-time of maximal formation of approximately 25 min. The oligomeric form had an estimated mass of 340,000 Da and likely consisted of a homodimer of the gp55-116 complex. By using a conformation-specific monoclonal antibody, postoligomerization folding of this molecule was demonstrated. This event exhibited an unusually prolonged half-maximal time of approximately 160 min. Both oligomerization and folding occurred in the endoplasmic reticulum. Oligomerization and folding occurred in the absence of carbohydrate modifications, although likely at lower efficiency. Finally, the oligomeric and folded forms were shown to be transported to the surface of infected cells and infectious virions.  相似文献   

9.
E O Freed  D J Myers    R Risser 《Journal of virology》1989,63(11):4670-4675
The envelope glycoproteins of the human immunodeficiency virus (HIV) type 1 are synthesized as a precursor molecule, gp160, which is cleaved to generate the two mature envelope glycoproteins, gp120 and gp41. The cleavage reaction, which is mediated by a host protease, occurs at a sequence highly conserved in retroviral envelope glycoprotein precursors. We have investigated the sequence requirements for this cleavage reaction by introducing four single-amino-acid changes into the glutamic acid-lysine-arginine sequence immediately amino terminal to the site of cleavage. We have also examined the effects of these mutations on the syncytium formation induced by HIV envelope glycoproteins. Our results indicate that a glutamic acid to glycine change at gp120 amino acid 516, a lysine to isoleucine change at amino acid 517, and an arginine to lysine change at amino acid 518 affect neither gp160 cleavage nor syncytium formation. The results obtained with the arginine to lysine change at amino acid 518 differ significantly from the results obtained with the same mutation at the envelope precursor cleavage site of a murine leukemia virus (E. O. Freed, and R. Risser, J. Virol. 61:2852-2856, 1987). An arginine to threonine mutation at gp120 amino acid 518, the terminal residue of gp120, abolishes both gp160 cleavage and syncytium formation. These findings demonstrate that despite its highly conserved nature, the basic pair of amino acids at the site of gp160 cleavage is not absolutely required for proper envelope glycoprotein processing. This report also supports the idea that cleavage of gp160 is required for activation of the HIV envelope fusion function.  相似文献   

10.
Hog cholera virus: molecular composition of virions from a pestivirus.   总被引:37,自引:19,他引:18       下载免费PDF全文
Virions from hog cholera virus (HCV), a member of the genus Pestivirus, were analyzed by using specific antibodies. The nucleocapsid protein was found to be a 14-kDa molecule (HCV p14). An equivalent protein could also be demonstrated for virions from another pestivirus, bovine viral diarrhea virus. The HCV envelope is composed of three glycoproteins, HCV gp44/48, gp33, and gp55. All three exist in the form of disulfide-linked dimers in virus-infected cells and in virions; HCV gp44/48 and gp55 each form homodimers, whereas gp55 is also found dimerized with gp33. Such complex covalent interactions between structural glycoproteins have not been described so far for any RNA virus.  相似文献   

11.
The human cytomegalovirus (HCMV) envelope glycoprotein complex gp55-116 was expressed in both Escherichia coli and cells infected with a recombinant vaccinia virus. E. coli produced a single protein of Mr 100,000 which approximated the size of the nonglycosylated gp55-116 precursor found in HCMV-infected cells. Cells infected with the recombinant vaccinia virus contained three intracellular forms of Mr 160,000, 150,000, and 55,000 which were detected by a monoclonal antibody reactive with gp55. Comparison of the immunological properties of these recombinant proteins indicated that several of the HCMV gp55-116 monoclonal antibodies and sera from patients infected with HCMV reacted with the vaccinia virus-derived proteins whereas a more restricted group of monoclonal antibodies recognized the E. coli-produced protein. Immunization of mice with either E. coli or vaccinia virus recombinant HCMV gp55-116 resulted in production of virus-neutralizing antibodies. In contrast to the almost exclusive production of complement-dependent neutralizing antibodies following immunization with recombinant vaccinia virus, the E. coli-derived protein induced complement-independent neutralizing antibodies.  相似文献   

12.
The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.  相似文献   

13.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

14.
Characterization of envelope proteins of alcelaphine herpesvirus 1.   总被引:1,自引:0,他引:1       下载免费PDF全文
Alcelaphine herpesvirus 1 is a gammaherpesvirus which causes malignant catarrhal fever, an acute lymphoproliferative disorder of cattle and other susceptible Bovidae, which is almost invariably fatal. A preliminary analysis of proteins induced by the virus indicated that as many as six glycoproteins and one nonglycosylated molecule might be present in the virus envelope. Monoclonal antibodies selected for recognition of virion envelope proteins included two that recognized a complex of infected cell proteins, designated the gp115 complex, and neutralized virus infectivity in the absence of complement. The gp115 complex consisted of five glycoproteins of 115, 110, 105, 78, and 48 kilodaltons (kDa), and all except the 48-kDa species reacted with antibody in Western blots (immunoblots). Pulse-chase experiments analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions suggested that the 110-kDa protein was the precursor molecule which was processed by addition of sugars to 115 kDa. The 115-kDa protein was cleaved to form a disulfide-linked heterodimer of 78 and 48 kDa, which was the mature form of the molecule incorporated into the virion envelope. The glycoprotein contained N-linked sugars, but little or no O-linked sugar was present. The relative abundance of the mature protein and its ability to induce neutralizing antibodies suggest that it will prove useful to studies aimed at elucidating the biology and pathogenesis of alcelaphine herpesvirus 1.  相似文献   

15.
N Kniess  M Mach  J Fay    W J Britt 《Journal of virology》1991,65(1):138-146
Human convalescent serum and bacterial fusion proteins constructed from overlapping open reading frames of the nucleotide sequence encoding the human cytomegalovirus gp55 component of the major envelope glycoprotein complex, gp55-116 (gB), were used to localize antigenic regions recognized by human antibodies. All donor serum analyzed contained antibody reactivity for an antigenic site(s) located between amino acids (AA) 589 and 645, a region containing a previously defined linear site recognized by neutralizing monoclonal antibodies (U. Utz, B. Britt, L. Vugler, and M. Mach, J. Virol. 63:1995-2001, 1989). Furthermore, in-frame insertion of two different synthetic oligonucleotides encoding four amino acids into the sequence at nucleotide 1847 (AA 616) eliminated antibody recognition of the fusion protein. A second antibody binding site was located within the carboxyl terminus of the protein (AA 703 through 906). A competitive binding inhibition assay in which monoclonal antibodies were used to inhibit human antibody reactivity with recombinant gp55-116 (gB) suggested that the majority of human anti-gp55-116 (gB) antibodies were directed against a single antigenic region located between AA 589 and 645. Furthermore, inoculation of mice with fusion proteins containing this antigenic site led to a boostable antibody response. These results indicated that the antigenic site(s) located between AA 589 and 645 was an immunodominant antibody recognition site on gp55 and likely the whole gp55-116 (gB) molecule. The enhanced immunogenicity of this region in vivo may account for its immunodominance.  相似文献   

16.
Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope glycoproteins gp160, gp120, and gp41 or gag proteins p55, p40, p24, and p17) in infected lymphoblastoid cell lines as demonstrated by radioimmunoprecipitation and syncytia formation with c8166 cells. Killer cell-mediated, HIV-specific ADCC was found in sera from HIV-seropositive but not HIV-seronegative hemophiliacs. This HIV-specific response was directed against envelope glycoprotein but was completely absent against target cells expressing the HIV gag proteins. The ADCC directed against gp160 was present at serum dilutions up to 1/316,000. There was no correlation between serum ADCC titer and the stage of HIV-related illness as determined by T-helper-cell numbers. These experiments clearly implicated gp160 as the target antigen of HIV-specific ADCC activity following natural infection. Vaccines which stimulate antibodies directed against gp160, which are capable of mediating ADCC against infected cells, could be important for protection against infection by cell-associated virus.  相似文献   

17.
A Otteken  P L Earl    B Moss 《Journal of virology》1996,70(6):3407-3415
Monoclonal antibodies (MAbs) that bind linear or conformational epitopes on monomeric or oligomeric human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins were screened for their recognition of maturational intermediates. On the basis of reactivities with gp160 at different times after pulse-labeling, the MAbs were sorted into groups that exhibited binding which was immediate and constant, immediate but transient, delayed, late, or very late. This grouping was consistent with the selectivity of the MAbs for structural features of gp160. Thus, a MAb to the V3 loop reacted with envelope proteins at all times, in accord with the relative conformational independence and accessibility of the epitope. Several MAbs that preferentially react with monomeric gp160 exhibited diminished binding after the pulse. A 10-min tag occurred before gp160 reacted with conformational MAbs that inhibited CD4 binding. The availability of epitopes for other conformational MAbs, including some that react equally with monomeric and oligomeric gp160 and some that react better with oligomeric forms, was half-maximal in 30 min and closely followed the kinetics of gp160 oligomerization. Remarkably, there was a 1- to 2-h delay before gp160 reacted with stringent oligomer-specific MAbs. After 4 h, approximately 20% of the gp160 was recognized by these MAbs. Epitopes recognized by monomerspecific or CD4-blocking MAbs but not by oligomer-dependent MAbs were present on gp160 molecules associated with the molecular chaperone BiP/GRP78. MAbs with a preference for monomers reacted with recombinant or HIV-1 envelope proteins in the endoplasmic reticulum, whereas the oligomer-specific MAbs recognized them in the Golgi complex. Additional information regarding gp160 maturation and intracellular trafficking was obtained by using brefeldin A, dithiothreitol, and a low temperature.  相似文献   

18.
We have compared the expression of full-length gp160 envelope protein from human immunodeficiency virus type 1 with that of a deletion mutant lacking the N-terminal 31 amino acids of the mature protein (gp160 delta 32). The gp160 and gp160 delta 32 proteins are processed to yield gp41 and gp120 or gp120 delta 32, respectively. In contrast to full-length gp120, gp120 delta 32 failed to associate with gp41 at the cell surface, despite conformational integrity as judged by soluble CD4 binding. Thus, the N-terminal 31 amino acids of gp120, which contain hyperconserved sequences, are likely involved in forming a contact site for gp41.  相似文献   

19.
The murine leukemia virus envelope protein is synthesized as a precursor molecule, Pr85env, which is proteolytically cleaved at an arginine residue to produce two mature envelope proteins, gp70 and p15(E). The results presented here indicate that mutation to lysine of the arginine found at the envelope precursor cleavage site results in a precursor which is cleaved with an efficiency at least 10-fold lower than the efficiency with which the wild-type protein is cleaved. This mutation has been used to investigate the requirement for envelope protein processing in various aspects of retroviral infection. Viruses produced by cells transfected with mutant proviral clones are approximately 10-fold less infectious than wild-type viruses. Mutant viruses are incapable of inducing XC cell syncytium formation and are 100-fold less efficient than wild-type viruses at rendering cells resistant to superinfection. Envelope glycoproteins bearing the lysine mutation are found in reduced amounts on the surface of infected cells, and as a result mutant virions contain significantly less envelope protein than do wild-type virions. The phenotypic effects of the processing mutation described here are most likely the result of this paucity of envelope glycoproteins in virions carrying the mutation.  相似文献   

20.
The HIV-1 envelope glycoproteins are assembled by the trimeric gp120s and gp41s proteins. The gp120 binds sequentially to CD4 and coreceptor for initiating virus entry. Because of noncovalent interaction and heavy glycosylation for envelope glycoproteins, it is highly difficult to determine entire envelope glycoproteins structure now. Such question extremely limits our good understanding of HIV-1 membrane fusion mechanism. Here, a novel and reasonable assembly model of trimeric gp120s and gp41s was proposed based on the conformational dynamics of trimeric gp120-gp41 complex and gp41, respectively. As for gp41, the heptad repeat sequences in the gp41 C-terminal is of enormous flexibility. On the contrary, the heptad repeat sequences in the gp41 N-terminal likely present stable three-helical bundle due to strong nonpolar interaction, and they were predicted to associate three alpha1 helixes from the non-neutralizing face of the gp120 inner domain, which is quite similar to gp41 fusion core structure. Such interaction likely leads to the formation of noncovalent gp120-gp41 complex. In the proposed assembly of trimeric gp120-gp41 complex, three gp120s present not only perfectly complementary and symmetrical distribution around the gp41, but also different flexibility degree in the different structural domains. Thus, the new model can well explain numerous experimental phenomena, present plenty of structural information, elucidate effectively HIV-1 membrane fusion mechanism, and direct to further develop vaccine and novel fusion inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号