共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a rapid method for isolation of the Photosystem I (PS1) complex from Chlamydomonas reinhardtii using epitope tagging. Six histidine residues were genetically added to the N-terminus of the PsaA core subunit of PS1. The
His6-tagged PS1 could be purified with a yield of 80–90% from detergent-solubilized thylakoid membranes within 3 h in a single
step using a Ni-nitrilotriacetic acid (Ni-NTA) column. Immunoblots and low-temperature fluorescence analysis indicated that
the His6-tagged PS1 preparation was highly pure and extremely low in uncoupled pigments. Moreover, the introduced tag appeared to
have no adverse effect upon PS1 structure/function, as judged by photochemical assays and EPR spectroscopy of isolated particles,
as well as photosynthetic growth tests of the tagged strain.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
2.
Svetlana N. Roudyk André Moxhet René F. Matagne Jacques Aghion 《Photosynthesis research》1996,47(1):99-102
The oxygen evolved by Chlamydomonas reinhardtii in the light is measured simultaneously with a Clark electrode and with the nitrosodimethylaniline-imidazole colorimetric method which is specific for singlet oxygen. Experiments with wild-type and FuD7 mutant cells (unable to synthesize the D1 protein of Photosystem II), with dichlorophenyldimethylurea (which blocks electron transfer from Photosystem II to Photosystem I) and with dibromothymoquinone (which diverts electrons from their normal path between the two photosystems), as well as with hydroxylamine (an inactivator of the water-splitting part of Photosystem II and a competitor of water for electron donation to it), all point to the dependence of detected singlet oxygen on photolysis of water by Photosystem II.Abbreviations DBMIB
Dibromothymoquinone
- DCMU
Dichlorophenyldimethylurea
- PS I and PS II
Photosystems I and II
- RNO
para-nitrosodimethylaniline
Contribution of the Centre interdisciplinaire de Biochimie de Oxygène. 相似文献
3.
R Tokutsu N Kato KH Bui T Ishikawa J Minagawa 《The Journal of biological chemistry》2012,287(37):31574-31581
Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core. 相似文献
4.
Maria Rova Lars-Gunnar Franzén Per-Olof Fredriksson Stenbjörn Styring 《Photosynthesis research》1994,39(1):75-83
The psbP gene product, the so called 23 kDa extrinsic protein, is involved in water oxidation carried out by Photosystem II. However, the protein is not absolutely required for water oxidation. Here we have studied Photosystem II mediated electron transfer in a mutant of Chlamydomonas reinhardtii, the FUD 39 mutant, that lacks the psbP protein. When grown in dim light the Photosystem II content in thylakoid membranes of FUD 39 is approximately similar to that in the wild-type. The oxygen evolution is dependent on the presence of chloride as a cofactor, which activates the water oxidation with a dissociation constant of about 4 mM. In the mutant, the oxygen evolution is very sensitive to photoinhibition when assayed at low chloride concentrations while chloride protects against photoinhibition with a dissociation constant of about 5 mM. The photoinhibition is irreversible as oxygen evolution cannot be restored by the addition of chloride to inhibited samples. In addition the inhibition seems to be targeted primarily to the Mn-cluster in Photosystem II as the electron transfer through the remaining part of Photosystem II is photoinhibited with slower kinetics. Thus, this mutant provides an experimental system in which effects of photoinhibition induced by lesions at the donor side of Photosystem II can be studied in vivo.Abbreviations Chl
chlorophyll
- DCIP
2,6-dichlorophenolindophenol
- DPC
2,2-diphenylcarbonic dihydrazide
- HEPES
4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid
- P680
the primary electron donor to PS II
- PpBQ
phenyl-p-benzoquinone
- PS II
Photosystem II
- QA
the first quinone acceptor of PS II
- QB
the second quinone acceptor of PS II
- SDS
sodium dodecyl sulfate
- Tris
tris(hydroxymethyl)aminomethane
- TyrD
accessory electron donor on the D2-protein
- TyrZ
tyrosine residue, acting as electron carrier between P680 and the water oxidizing system 相似文献
5.
Photosynthetically active vesicles prepared from Chlamydomonas reinhardtii retained a light-dependent glutamate synthase activity which was highly specific for 2-oxoglutarate (Km=2.1 mM) and L-glutamine (Km=0.9 mM) as amido group acceptor and donor respectively. This activity was inhibited by azaserine, p-hydroxymercuribenzoate and 3-(p-chlorophenyl)-1,1-dimethyl urea.Light-dependent synthesis of glutamate was also obtained by coupling Chlamydomonas photosynthetic particles to purified ferredoxin-glutamate synthase, using ascorbate and 2,6-dichlorophenol-indophenol as electron donor. This system was also specific for 2-oxoglutarate (Km=1 mM) and L-glutamine (Km=0.8 mM) as substrates, and was stimulated by dithioerythritol. Azaserine and p-hydroxymercuribenzoate, but not 3-(p-chlorophenyl)-1,1-dimethyl urea, inhibited the reconstituted activity; high concentrations of 2-oxoglutarate were inhibitory.Abbreviations A
Absorbance
- CCP
p-Trichlorometoxi-carbonylcyanide-phenylhydrazone
- Chl
Chlorophyll
- CMU
3-(p-Chlorophenyl)-1,1-dimethyl urea
- DPIP
2,6-Dichlorophenol-indophenol
- DTE
Dithioerythritol
- MSX
L-Methionine, D-L, sulfoximine
- MV
Methyl viologen 相似文献
6.
The photoacoustic technique was used to measure energy storage by cyclic electron transfer around photosystem I in intact Chlamydomonas reinhardtii cells illuminated with far-red light (>715 nm). The in-vivo cyclic pathway was characterized by investigating the effects of various chemicals on energy storage. Participation of plastoquinone and ferredoxin in the cyclic electron flow was confirmed by the complete suppression of energy storage in the presence of the plastoquinol antagonist 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the ferredoxin inhibitors/competitors methylviologen, phenylmercuric acetate and p-benzoquinone. Two alternative electron cycles are demonstrated to operate in vivo. One cycle is sensitive to antimycin A, myxothiazol and 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) and is catalyzed by ferredoxin which reduces plastoquinone through a route involving cytochrome b
6 and its protonmotive Q-cycle. The other cycle is unaffected by the above-mentioned inhibitors but is sensitive to N-ethylmaleimide (NEM), an inhibitor of the ferredoxin-NADP reductase, and 2-monophosphoadenosine-5-diphosphoribose (PADR), an analogue of NADP, showing that the electron recycling was mediated by NADPH. Possibly, electrons enter the plastoquinone pool through the action of a NAD(P)H dehydrogenase, which is insensitive to classical inhibitors of the mitochondrial NADH dehydrogenase. Loss of energy storage by photosystem-I-driven cyclic electron transfer in farred light was observed only when antimycin A, myxothiazol or HQNO was used in combination with NEM or PADR. Analysis of the light-intensity dependence and the rate of in-vivo cyclic electron transfer in the presence of various inhibitors indicates that the NADPH-dependent electron-cycle is the preferential cyclic pathway in Chlamydomonas cells illuminated with far-red light.Abbreviations Amax
maximal photothermal signal
- Cyt
cytochrome
- DBMIB
2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone
- DCMU (diuron)
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- ES
photochemical energy storage
- FNR
ferredoxin NADP+ reductase
- HQNO
2-(n-heptyl)-4-hydroxyquinoline N-oxide
- NEM
N-ethylmaleimide
- P700
reaction-center pigment of PSI
- PADR
2-monophosphoadenosine-5-diphosphoribose
- pBQ
p-benzoquinone
- PMA
phenylmercuric acetate
We are very grateful to Dr. M.-H. Montane (Cadarache, Saint-Paul-lez-Durance, France) for her advice in the electroporation experiments. 相似文献
7.
Jürgen Voigt Dieter Mergenhagen Irmhild Wachholz Elsbeth Manshard Marianne Mix 《Planta》1991,183(1):65-68
Sporangia were accumulated in autotrophically and mixotrophically growing cultures of the Chlamydomonas reinhardtii mutant strain ls entering the stationary phase. Such an accumulation of sporangia was never observed in stationary-phase cultures of wildtype strains. Sporangia harvested from stationary-phase cultures of the mutant strain ls released their zoospores after being resuspended in fresh culture medium. Liberation of zoospores was also observed during fixation of these sporangia with glutaraldehyde and OsO4. Release of zoospores during fixation was prevented by pretreatment with 3 mol·l–1 LiCl. Ultrastructural analyses of these LiCl-pretreated sporangia revealed that they contained abnormal sporangial walls: sporangia containing sporangia and sporangia surrounded by additional multilayered cell walls have been observed. Similar abnormal cell-wall structures were found in sporangia accumulated at the end of the dark period, when the mutant strain ls was grown photoautotrophically under a 12 h light-12 h dark regime with suboptimal aeration. When grown under optimal conditions, this particular mutant did not show any abnormal wall structures.This work has been supported by a grant from the Deutsche Forschungsgemeinschaft. The authors thank Mrs. C. Adami for the photographic work. 相似文献
8.
We have measured, under Cu (II) toxicity conditions, the oxygen-evolving capacity of spinach PS II particles in the Hill reactions H2OSiMo (in the presence and absence of DCMU) and H2OPPBQ, as well as the fluorescence induction curve of Tris-washed spinach PS II particles. Cu (II) inhibits both Hill reactions and, in the first case, the DCMU-insensitive H2O SiMo activity. In addition, the variable fluorescence is lowered by Cu (II). We have interpreted our results in terms of a donor side inhibition close to the reaction center. The same polarographic and fluorescence measurements carried out at different pHs indicate that Cu (II) could bind to amino acid residues that can be protonated and deprotonated. In order to reverse the Cu (II) inhibition by a posterior EDTA treatment, in experiments of preincubation of PS II particles with Cu (II) in light we have demonstrated that light is essential for the damage due to Cu (II) and that this furthermore is irreversible.Abbreviations DCMU
3-(3,4-dichlorophenyl)-1, 1-dimethyl urea
- DCIP
2,6-dichlorophenolindophenol
- DPC
1,5-diphenilcarbazide
- Fo
initial non-variable fluorescence
- FI
intermediate fluorescence yield
- Fm
maximum fluorescence yield
- Fv
variable fluorescence yield
- Mes
2,-(N-morpholino)ethanosulfonic acid
- OEC
oxygen-evolving complex
- P680
Primary electron donor chlorophyll
- Pheo
pheophytin
- PPBQ
phenyl-p-benzo-quinone
- PS II
Photosystem II
- SiMo
Silicomolybdate
- QB
secondary quinone acceptor
- QA
primary quinone aceptor
- Tris
N-tris(hydroxymethyl)amino ethane
- Tyrz
electron carrier functioning between P680 and the Mn cluster
This article is dedicated to Prof. Dr. Harmut Lichtenthaler on the occasion of his 60th birthday. 相似文献
9.
10.
Stefan Falk Jerry W. Leverenz Göran Samuelsson Gunnar Öquist 《Photosynthesis research》1992,31(1):31-40
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl
chlorophyll
- DCMU
3,(3,4-dichlorophenyl)-1,1-dimethylurea
- FM
maximal fluorescence yield
- Fpl
intermediate fluorescence yield plateau level
- F0
non-variable fluorescence yield
- Fv
total variable fluorescence yield (FM-F0)
-
initial slope to the light response curve, used as an estimate of initial quantum yield
-
convexity (rate of bending) of the light response curve of photosynthesis
- LHC
light-harvesting complex
- Pmax
maximum rate of photosynthesis
- PQ
plastoquinone
- Q
photosynthetically active photon flux density (400–700 nm, mol m–2s–1)
- PS
photosystem
- QA and QB
primary and secondary quinone electron acceptor of PS II 相似文献
11.
Urate was taken up at a negligible rate by Chlamydomonas reinhardtii cells grown on ammonium and transferred to media containing urate plus ammonium or urate plus chloral hydrate or cycloheximide. Addition of ammonium to cells actively consuming urate produced a rapid inhibition of urate uptake whereas the intracellular oxidation of urate was unaffected. Methylammonium but not glutamine or glutamate inhibited urate uptake. Addition of l-methionine-dl-sulfoximine to cells actively consuming urate provoked ammonium excretion, which was accompanied by a rapid inhibition of urate uptake. In cells growing on urate and exhibiting noticeable levels of nitrite-reductase activity, nitrite caused a sudden inhibition of urate uptake whereas nitrate required a time to induce nitrate reductase and to exert its inhibitory effect on uptake. The urate-uptake system did not require urate for induction since the urate-uptake capacity appeared in nitrogen-starved cells. From these results it is concluded that, in Chlamydomonas reinhardtii, ammonium inhibits urate uptake and also acts as co-repressor of the uptake system. 相似文献
12.
When grown in the light and in a Tris-acetate phosphate medium, cells of Chlamydomonas reinhardtii Dang. can use the following l-amino acids as a sole nitrogen source: asparagine, glutamine, arginine, lysine, alanine, valine, leucine, isoleucine, serine, methionine, histidine, and phenylalanine, whereas, in the absence of acetate, the cells only used l-arginine. The utilization system in the acetate medium consisted of an extracellular deaminating activity induced by l-amino acids; it took between 10 to 30 h before the system appeared in cells previously grown with ammonium. This deaminase activity was nonspecific, required an organic carbon source for its de-novo synthesis, and was sensitive to high ammonium concentration and light deprivation.Abbreviations HPLC
high-performance liquid chromatography
- TAP
Tris-acetate-phosphate
This work was supported by a grant of the CAICYT, Spain. The secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.To whom correspondence should be addressed. 相似文献
13.
We have isolated very high light resistant nuclear mutants (VHL
R) in Chlamydomonas reinhardtii, that grow in 1500–2000 mol photons m–2 s–1 (VHL) lethal to wildtype. Four nonallelic mutants have been characterized in terms of Photosystem II (PS II) function, nonphotochemical quenching (NPQ) and xanthophyll pigments in relation to acclimation and survival under light stress. In one class of VHL
R mutants isolated from wild type (S4 and S9), VHL resistance was accompanied by slower PS II electron transfer, reduced connectivity between PS II centers and decreased PS II efficiency. These lesions in PS II function were already present in the herbicide resistant D1 mutant A251L (L
*) from which another class of VHL
R mutants (L4 and L30) were isolated, confirming that optimal PS II function was not critical for survival in very high light. Survival of all four VHL
R mutants was independent of CO2 availability, whereas photoprotective processes were not. The de-epoxidation state (DPS) of the xanthophyll cycle pigments in high light (HL, 600 mol photons m–2 s–1) was strongly depressed when all genotypes were grown in 5% CO2. In S4 and S9 grown in air under HL and VHL, high DPS was well correlated with high NPQ. However when the same genotypes were grown in 5% CO2, high DPS did not result in high NPQ, probably because high photosynthetic rates decreased thylakoid pH. Although high NPQ lowered the reduction state of PS II in air compared to 5% CO2 at HL in wildtype, S4 and S9, this did not occur during growth of S4 and S9 in VHL. L
* and VHL
R mutants L4 and L30, also showed high DPS with low NPQ when grown air or 5% CO2, possibly because they were unable to maintain sufficiently high pH due to constitutively impaired PS II electron transport. Although dissipation of excess photon energy through NPQ may contribute to VHL resistance, there is little evidence that the different genes conferring the VHL
R phenotype affect this form of photoprotection. Rather, the decline of chlorophyll per biomass in all VHL
R mutants grown under VHL suggests these genes may be involved in regulating antenna components and photosystem stoichiometries.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
14.
Scott M. Newman Nicholas W. Gillham Elizabeth H. Harris Anita M. Johnson John E. Boynton 《Molecular & general genetics : MGG》1991,230(1-2):65-74
Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function. 相似文献
15.
Brian C. Monk 《Planta》1988,176(4):441-450
The cell walls of Chlamydomonas gametes are multilayered structures supported on frameworks of polypeptides extending from the plasma membrane. The wall-polypeptide catalogue reported by Monk et al. (1983, Planta 158, 517–533) and extended by U.W. Goodenough et al. (1986, J. Cell Biol. 103, 405–417) was re-evaluated by comparative analysis of mechanically isolated cell walls purified from several strains. The extracellular locus of wall polypeptides was verified by in vivo iodogen-catalysed iodination and by autolysin-mediated elimination of the bulk of these polypeptides from the cell surface. Three (w15, w16, w17) and possibly four (w14) polypeptides were located to the most exterior aspect of the wall because of their susceptibility to Enzymobeadcatalysed iodination and their retention by a cell-wall-less mutant. The composition of shed walls stabilised with ethylenediaminetetraacetic acid during natural mating and kinetic analysis of the dissolution of walls purified from a bald-2 mutant demonstrated the rapid and specific destruction of polypeptide w3. Differential solubilisation of wall polypeptides occurred after loss of w3. Wall dissolution, characterised by the generation of fishbone structures from the W2 layer, gave as many as four additional polypeptides. Charged detergents and sodium perchlorate extracted a comparable range of polypeptides at room temperature from mechanically isolated walls, i.e. components of the W4–W6 layers, hot sodium dodecyl sulphate solubilised framework polypeptides, while reducing agent was required to solubilise the W2 layer. A model of wall structure is presented.Abbreviations DTE
dithioerythritol
- EDTA
ethylenediaminetetraacetic acid
- Mr
relative molecular mass
- SDS-PAGE
sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- Tris
2-amino-2-(hydroxymethyl)-1,3-propanediol 相似文献
16.
van der Staay GW Moon-van der Staay SY Garczarek L Partensky F 《Photosynthesis research》2000,65(2):131-139
The nucleotide sequences of the genes coding for the subunits of the Photosystem I (PS I) core, PsaA and PsaB were determined
for the marine prokaryotic oxyphototrophs Prochlorococcus sp. MED4 (CCMP1378), P. marinus SS120 (CCMP1375) and Synechococcus sp. WH7803. Divergence of these sequences from those of both freshwater cyanobacteria and higher plants was remarkably high,
given the conserved nature of PsaA and PsaB proteins. In particular, the PsaA of marine prokaryotes showed several specific
insertions and deletions with regard to known PsaA sequences. Even in between the two Prochlorococcus strains, which correspond to two genetically different ecotypes with shifted growth irradiance optima, the sequence identity
was only 80.2% for PsaA and 88.9% for PsaB. Possible causes and implications of the fast evolution rates of these two PS I
core subunits are discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
17.
18.
19.
Grossman A 《Protist》2000,151(3):201-224
To cope with low nutrient availability in nature, organisms have evolved inducible systems that enable them to scavenge and efficiently utilize the limiting nutrient. Furthermore, organisms must have the capacity to adjust their rate of metabolism and make specific alterations in metabolic pathways that favor survival when the potential for cell growth and division is reduced. In this article I will focus on the acclimation of Chlamydomonas reinhardtii, a unicellular, eukaryotic green alga to conditions of nitrogen, sulfur and phosphorus deprivation. This organism has a distinguished history as a model for classical genetic analyses, but it has recently been developed for exploitation using an array of molecular and genomic tools. The application of these tools to the analyses of nutrient limitation responses (and other biological processes) is revealing mechanisms that enable Chlamydomonas to survive harsh environmental conditions and establishing relationships between the responses of this morphologically simple, photosynthetic eukaryote and those of both nonphotosynthetic organisms and vascular plants. 相似文献
20.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle. 相似文献