首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liao W  Qiu C  Gentili C  Walter M  Pan Z  Ding J  Zhang W  Gong Q  Chen H 《PloS one》2010,5(12):e15238
The amygdala is often found to be abnormally recruited in social anxiety disorder (SAD) patients. The question whether amygdala activation is primarily abnormal and affects other brain systems or whether it responds "normally" to an abnormal pattern of information conveyed by other brain structures remained unanswered. To address this question, we investigated a network of effective connectivity associated with the amygdala using Granger causality analysis on resting-state functional MRI data of 22 SAD patients and 21 healthy controls (HC). Implications of abnormal effective connectivity and clinical severity were investigated using the Liebowitz Social Anxiety Scale (LSAS). Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs. Clinical relevance of decreased effective connectivity from ITG to amygdala was suggested by a negative correlation of LSAS avoidance scores and the value of Granger causality. Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD. This is in support of a disregulation in predescribed modules involved in affect control. The amygdala is placed in a central position of dysfunction characterized both by decreased regulatory influence of orbitofrontal cortex and increased crosstalk with visual cortex. The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder.  相似文献   

2.
Prediction of protein residue contacts with a PDB-derived likelihood matrix   总被引:8,自引:0,他引:8  
Proteins with similar folds often display common patterns of residue variability. A widely discussed question is how these patterns can be identified and deconvoluted to predict protein structure. In this respect, correlated mutation analysis (CMA) has shown considerable promise. CMA compares multiple members of a protein family and detects residues that remain constant or mutate in tandem. Often this behavior points to structural or functional interdependence between residues. CMA has been used to predict pairs of amino acids that are distant in the primary sequence but likely to form close contacts in the native three-dimensional structure. Until now these methods have used evolutionary or biophysical models to score the fit between residues. We wished to test whether empirical methods, derived from known protein structures, would provide useful predictive power for CMA. We analyzed 672 known protein structures, derived contact likelihood scores for all possible amino acid pairs, and used these scores to predict contacts. We then tested the method on 118 different protein families for which structures have been solved to atomic resolution. The mean performance was almost seven times better than random prediction. Used in concert with secondary structure prediction, the new CMA method could supply restraints for predicting still undetermined structures.  相似文献   

3.
带状疱疹后神经痛(postherpetic neuralgia,PHN)是一种常见的神经病理性疼痛,但其中枢机制尚不明了.杏仁核在疼痛反应中的作用近年来受到关注.本研究的目的在于通过功能磁共振成像,研究带状疱疹后神经痛患者杏仁核各个亚区功能连接(functional connectivity,FC)的改变,探索慢性神经病理性疼痛的中枢机制.8位带状疱疹后神经痛患者和8位健康者进行了普通核磁共振和静息态功能磁共振扫描.将杏仁核各个亚区分别进行的功能连接分析,并将功能连接和被试者的病程、视觉模拟评分(visual analog scale,VAS)进行了相关分析.与健康志愿者相比,PHN患者杏仁核的基底外侧部(laterobasal groups,LB)和皮质部(superficial groups,SF)与多个脑区的FC表现出增强,主要位于颞叶和额叶.同时SF与多个区域的FC出现减低,主要位于额叶和顶叶.颞叶和额叶部分区域与LB的FC强度、与病程长短和VAS评分表现出关联性.研究结果提示,PHN患者杏仁核功能连接的改变提示了在慢性神经病理性疼痛的产生和发展中,杏仁核以及多个涉及情绪、认知、注意的脑区发挥了重要作用.  相似文献   

4.
Despite mounting reports about the negative effects of chronic occupational stress on cognitive and emotional functions, the underlying mechanisms are unknown. Recent findings from structural MRI raise the question whether this condition could be associated with a functional uncoupling of the limbic networks and an impaired modulation of emotional stress. To address this, 40 subjects suffering from burnout symptoms attributed to chronic occupational stress and 70 controls were investigated using resting state functional MRI. The participants'' ability to up- regulate, down-regulate, and maintain emotion was evaluated by recording their acoustic startle response while viewing neutral and negatively loaded images. Functional connectivity was calculated from amygdala seed regions, using explorative linear correlation analysis. Stressed subjects were less capable of down-regulating negative emotion, but had normal acoustic startle responses when asked to up-regulate or maintain emotion and when no regulation was required. The functional connectivity between the amygdala and the anterior cingulate cortex correlated with the ability to down-regulate negative emotion. This connectivity was significantly weaker in the burnout group, as was the amygdala connectivity with the dorsolateral prefrontal cortex and the motor cortex, whereas connectivity from the amygdala to the cerebellum and the insular cortex were stronger. In subjects suffering from chronic occupational stress, the functional couplings within the emotion- and stress-processing limbic networks seem to be altered, and associated with a reduced ability to down-regulate the response to emotional stress, providing a biological substrate for a further facilitation of the stress condition.  相似文献   

5.
Several theories have been proposed to explain the evolution of species differences in brain size, but no consensus has emerged. One unresolved question is whether brain size differences are a result of neural specializations or of biological constraints affecting the whole brain. Here I show that, among primates, brain size variation is associated with visual specialization. Primates with large brains for their body size have relatively expanded visual brain areas, including the primary visual cortex and lateral geniculate nucleus. Within the visual system, it is, in particular, one functionally specialized pathway upon which selection has acted: evolutionary changes in the number of neurons in parvocellular, but not magnocellular, layers of the lateral geniculate nucleus are correlated with changes in both brain size and ecological variables (diet and social group size). Given the known functions of the parvocellular pathway, these results suggest that the relatively large brains of frugivorous species are products of selection on the ability to perceive and select fruits using specific visual cues such as colour. The separate correlation between group size and visual brain evolution, on the other hand, may indicate the visual basis of social information processing in the primate brain.  相似文献   

6.
Traumatic brain injury (TBI) can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA) for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1) the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2) the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3) the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion.  相似文献   

7.
A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.  相似文献   

8.
The amygdala is a key brain area regulating responses to stress and emotional stimuli, so improving our understanding of how it is regulated could offer novel strategies for treating disturbances in emotion regulation. As we review here, a growing body of evidence indicates that the gut microbiota may contribute to a range of amygdala‐dependent brain functions from pain sensitivity to social behavior, emotion regulation, and therefore, psychiatric health. In addition, it appears that the microbiota is necessary for normal development of the amygdala at both the structural and functional levels. While further investigations are needed to elucidate the exact mechanisms of microbiota‐to‐amygdala communication, ultimately, this work raises the intriguing possibility that the gut microbiota may become a viable treatment target in disorders associated with amygdala dysregulation, including visceral pain, post‐traumatic stress disorder, and beyond. Also see the video abstract here: https://youtu.be/O5gvxVJjX18  相似文献   

9.
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.  相似文献   

10.
Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.  相似文献   

11.
While species fulfill many different roles in ecosystems, it has been suggested that numerous species might actually share the same function in a near neutral way. So-far, however, it is unclear whether such functional redundancy really exists. We scrutinize this question using extensive data on the world’s 4168 species of diving beetles. We show that across the globe these animals have evolved towards a small number of regularly-spaced body sizes, and that locally co-existing species are either very similar in size or differ by at least 35%. Surprisingly, intermediate size differences (10–20%) are rare. As body-size strongly reflects functional aspects such as the food that these generalist predators can eat, these beetles thus form relatively distinct groups of functional look-a-likes. The striking global regularity of these patterns support the idea that a self-organizing process drives such species-rich groups to self-organize evolutionary into clusters where functional redundancy ensures resilience through an insurance effect.  相似文献   

12.
Changes in neocortex size were a prominent feature of mammalian brain evolution, but the implications for cortical structure, and consequently for the functional significance of such changes in overall cortical size, are poorly understood. A basic question is whether functionally differentiated cortical areas evolved independently of one another (adaptive specialization) or were allometrically constrained to co-vary tightly with the size of the whole. Here, I provide comparative evidence for adaptive specialization of cortical structure. First, the sizes of individual areas differ significantly between taxa after controlling for overall cortical size. Second, an analysis of separate visual cortical areas reveals that these exhibit statistically correlated evolution, independent of variation in nonvisual areas. Third, visual cortex size exhibits correlated evolution with peripheral visual adaptations (eye morphology and optic nerve size) and with photic niche. Thus, the evolution of mammalian cortical structure was closely associated with specialization for different sensory niches.  相似文献   

13.
Reviving the superorganism   总被引:2,自引:0,他引:2  
Individuals become functionally organized to survive and reproduce in their environments by the process of natural selection. The question of whether larger units such as groups and communities can possess similar properties of functional organization, and therefore be regarded as "superorganisms", has a long history in biological thought. Modern evolutionary biology has rejected the concept of superorganisms, explaining virtually all adaptations at the individual or gene level. We criticize the modern literature on three counts. First, individual selection in its strong form is founded on a logical contradiction, in which genes-in-individuals are treated differently than individuals-in-groups or species-in-communities. Imposing consistency clearly shows that groups and communities can be organisms in the same sense that individuals are. Furthermore, superorganisms are more than just a theoretical possibility and actually exist in nature. Second, the view that genes are the "ultimate" unit of selection is irrelevant to the question of functional organization. Third, modern evolutionary biology includes numerous conceptual frameworks for analyzing evolution in structured populations. These frameworks should be regarded as different ways of analyzing a common process which, to be correct, must converge on the same conclusions. Unfortunately, evolutionists frequently regard them as competing theories that invoke different mechanisms, such that if one is "right" the others must be "wrong". The problem of multiple frameworks is aggravated by the fact that major terms, such as "units of selection", are defined differently within each framework, yet many evolutionists who use one framework to argue against another assume shared meanings. We suggest that focusing on the concept of organism will help dispell this fog of semantic confusion, allowing all frameworks to converge on the same conclusions regarding units of functional organization.  相似文献   

14.
The amygdala modulates memory consolidation and the storage of emotionally relevant information in other brain areas, and itself comprises a site of neural plasticity during aversive learning. These processes have been intensively studied in Pavlovian fear conditioning, a leading aversive learning paradigm that is dependent on the structural and functional integrity of the amygdala. The rapidness and persistence, and the relative ease, with which this conditioning paradigm can be applied to a great variety of species have made it an attractive model for neurochemical and electrophysiological investigations on memory formation. In this review we summarise recent studies which have begun to unravel cellular processes in the amygdala that are critical for the formation of long-term fear memory and have identified molecular factors and mechanisms of neural plasticity in this brain area.  相似文献   

15.
A trait may be at odds with theoretical expectation because it is still in the process of responding to a recent selective force. Such a situation can be termed evolutionary lag. Although many cases of evolutionary lag have been suggested, almost all of the arguments have focused on trait fitness. An alternative approach is to examine the prediction that trait expression is a function of the time over which the trait could evolve. Here we present a phylogenetic comparative method for using this 'time' approach and we apply the method to a long-standing lag hypothesis: evolutionary changes in brain size lag behind evolutionary changes in body size. We tested the prediction in primates that brain mass contrast residuals, calculated from a regression of pairwise brain mass contrasts on positive pairwise body mass contrasts, are correlated with the time since the paired species diverged. Contrary to the brain size lag hypothesis, time since divergence was not significantly correlated with brain mass contrast residuals. We found the same result when we accounted for socioecology, used alternative body mass estimates and used male rather than female values. These tests do not support the brain size lag hypothesis. Therefore, body mass need not be viewed as a suspect variable in comparative neuroanatomical studies and relative brain size should not be used to infer recent evolutionary changes in body size.  相似文献   

16.
In this work we examine how protein structural changes are coupled with sequence variation in the course of evolution of a family of homologs. The sequence-structure correlation analysis performed on 81 homologous protein families shows that the majority of them exhibit statistically significant linear correlation between the measures of sequence and structural similarity. We observed, however, that there are cases where structural variability cannot be mainly explained by sequence variation, such as protein families with a number of disulfide bonds. To understand whether structures from different families and/or folds evolve in the same manner, we compared the degrees of structural change per unit of sequence change ("the evolutionary plasticity of structure") between those families with a significant linear correlation. Using rigorous statistical procedures we find that, with a few exceptions, evolutionary plasticity does not show a statistically significant difference between protein families. Similar sequence-structure analysis performed for protein loop regions shows that evolutionary plasticity of loop regions is greater than for the protein core.  相似文献   

17.
Shared genetic and environmental risk factors have been identified for autistic spectrum disorders (ASD) and schizophrenia. Social interaction, communication, emotion processing, sensorimotor gating and executive function are disrupted in both, stimulating debate about whether these are related conditions. Brain imaging studies constitute an informative and expanding resource to determine whether brain structural phenotype of these disorders is distinct or overlapping. We aimed to synthesize existing datasets characterizing ASD and schizophrenia within a common framework, to quantify their structural similarities. In a novel modification of Anatomical Likelihood Estimation (ALE), 313 foci were extracted from 25 voxel-based studies comprising 660 participants (308 ASD, 352 first-episode schizophrenia) and 801 controls. The results revealed that, compared to controls, lower grey matter volumes within limbic-striato-thalamic circuitry were common to ASD and schizophrenia. Unique features of each disorder included lower grey matter volume in amygdala, caudate, frontal and medial gyrus for schizophrenia and putamen for autism. Thus, in terms of brain volumetrics, ASD and schizophrenia have a clear degree of overlap that may reflect shared etiological mechanisms. However, the distinctive neuroanatomy also mapped in each condition raises the question about how this is arrived in the context of common etiological pressures.  相似文献   

18.
It is now appreciated that condition-relevant information can be present within distributed patterns of functional magnetic resonance imaging (fMRI) brain activity, even for conditions with similar levels of univariate activation. Multi-voxel pattern (MVP) analysis has been used to decode this information with great success. FMRI investigators also often seek to understand how brain regions interact in interconnected networks, and use functional connectivity (FC) to identify regions that have correlated responses over time. Just as univariate analyses can be insensitive to information in MVPs, FC may not fully characterize the brain networks that process conditions with characteristic MVP signatures. The method described here, informational connectivity (IC), can identify regions with correlated changes in MVP-discriminability across time, revealing connectivity that is not accessible to FC. The method can be exploratory, using searchlights to identify seed-connected areas, or planned, between pre-selected regions-of-interest. The results can elucidate networks of regions that process MVP-related conditions, can breakdown MVPA searchlight maps into separate networks, or can be compared across tasks and patient groups.  相似文献   

19.

Background  

Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question.  相似文献   

20.
Tian L  Meng C  Yan H  Zhao Q  Liu Q  Yan J  Han Y  Yuan H  Wang L  Yue W  Zhang Y  Li X  Zhu C  He Y  Zhang D 《PloS one》2011,6(12):e28794

Background

Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives.

Methods

Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data.

Results

Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents.

Conclusions

Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号