首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
The in vitro exposure of Taenia crassiceps cysticerci to 17-beta estradiol (E2) and progesterone (P4) stimulated their reproduction and infectivity. Testosterone (T4) and dihydrotestosterone (DHT) inhibited their reproduction and reduced their motility and infectivity. E2 and P4 increased, whereas T4 and DHT reduced, the expression of parasite c-fos and c-jun and DNA synthesis. In vitro exposure of cysticerci to sex steroids before their inoculation into recipient noninfected mice resulted in large parasite loads when pretreated with E2 and P4 and in smaller loads when pretreated with T4 and DHT To determine the possible molecular mechanisms by which sex steroids affect T. crassiceps, sex steroid receptors were amplified. Taenia crassiceps expressed estrogen receptors (both alpha and beta isoforms) and androgen receptors but no P4 receptors. These results demonstrate that sex steroids act directly on parasite reproduction by binding to a classic and specific sex steroid receptor on the parasite. The differential response of cysticerci to sex steroids may also be involved in their ability to grow faster in the murine female or feminized male host. This is the first report of direct sex steroid effects on the parasite possibly through sex steroid receptors in the cysticerci.  相似文献   

8.
Plants might use a markedly different mechanism for steroid signaling than animals. In animals, steroid hormone signals are generally mediated by receptors inside the cell. However, a recent report by He et al. indicates that, in plants, steroids appear to be perceived at the plasma membrane rather than by intracellular receptors.  相似文献   

9.
Almost all modifications of the steroid binding domain of glucocorticoid receptors are known to cause a reduction or loss of steroid binding activity. Nonetheless, we now report that mutations of cysteine 656 of the rat receptor, which was previously suspected to be a crucial amino acid for the binding process, have produced "super" receptors. These receptors displayed an increased affinity for glucocorticoid steroids and a decreased relative affinity for cross-reacting steroids such as progesterone and aldosterone. The increased in vitro affinity of the super receptors was maintained in a whole cell bioassay. These results indicate that additional modifications of the glucocorticoid receptor, and probably the other steroid receptors, may further increase the binding affinity and/or specificity.  相似文献   

10.
Some of the early steps of steroid hormone action have been studied in cultured hepatoma cells, in which glucocorticoids induce tyrosine aminotransferase. The hypothesis that inducer steroids promote the binding of specific cytoplasmic receptors to the cell nucleus has been examined in intact cells.Binding of steroids such as dexamethasone and cortisol results in a loss of most of the receptor sites from the cytoplasm. This coincides with the binding of an equivalent number of steroid molecules in the nucleus. Both processes occur concomitantly, even when their kinetics are altered by reducing the temperature. When the inducer is removed from the culture, steroid dissociates from the nucleus while the level of cytoplasmic receptor returns to normal, even if protein or RNA synthesis is inhibited. These results suggest that nuclear binding of glucocorticoids is due to the association with the nucleus of the cytoplasmic receptor-steroid complex itself and make it unlikely that the receptor acts as a mere carrier for the intracellular transfer of the steroid.Steroids that differ in their effects on tyrosine aminotransferase induction were also studied. In contrast to those bound with inducer steroids, receptors complexed with the anti-inducer progesterone did not leave the cytosol. Further, a suboptimal inducer (deoxycorticosterone) produced an intermediate level of depletion. Thus, the biological effect of different classes of steroids can be related to their capacity to promote nuclear binding of the receptor. These data support a model proposed earlier, according to which the receptor is an allosteric regulatory protein directly involved in the hormone action, under the control of specific steroid ligands. They further suggest that the conformational state influenced by the inducer is such that a nuclear binding site on the receptor is exposed.Evidence is also presented that a distinct reaction takes place between the binding of the steroid to the receptor and the association of the complex with the nucleus. At 0 °C, this change is rate-limiting. It could correspond to the “activation” of receptor-steroid complexes known to be required for binding of the complexes by isolated nuclei, and thus represent an additional step in hormone action.  相似文献   

11.
12.
CAR and PXR: xenosensors of endocrine disrupters?   总被引:1,自引:0,他引:1  
  相似文献   

13.
Small signaling molecules that mediate cell-cell communication are essential for developmental regulation in multicellular organisms. Among them are the steroids and peptide hormones that regulate growth in both plants and animals. In plants, brassinosteroids (BRs) are perceived by the cell surface receptor kinase BRI1, which is distinct from the animal steroid receptors. Identification of components of the BR signaling pathway has revealed similarities to other animal and plant signal transduction pathways. Recent studies demonstrated that tomato BRI1 (tBRI1) perceives both BR and the peptide hormone systemin, raising new questions about the molecular mechanism and evolution of receptor-ligand specificity.  相似文献   

14.
Douglas F. Covey 《Steroids》2009,74(7):577-585
Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.  相似文献   

15.
Transfection experiments, a powerful tool to study the function of steroid hormone receptors and their coregulators, are often performed in COS-7 cells, because of high transfection efficiencies and expression levels. Here we report on the presence in COS-7 cells of an endogenous steroid hormone receptor, which is highly responsive to progesterone and the synthetic steroids R1881 and ORG2058, but not to 5 alpha-DHT. A 10-fold excess of the progesterone antagonist RU486 abolishes the stimulation by progesterone, while cotransfection with the coactivator TIF2 increases its activity 6- to 7-fold. A comparison of the ligand specificity with transfected androgen or progesterone receptors indicates that the endogenous receptor is a progesterone receptor. Its presence is confirmed by steroid-binding experiments, RT-PCR and Northern blot analysis. Consequently, progesterone receptor function may be studied conveniently in COS-7 cells without cotransfection of receptor, but the endogenous receptor may interfere in studies of ligand specificity and coactivation of cotransfected receptors.  相似文献   

16.
Sex steroids, through their receptors, have potent effects on the signal pathways involved in osteogenic or myogenic differentiation. However, a considerable segment of those signal pathways has a prominent role in epithelial neoplastic transformation. The capability to intervene locally has focused on specific ligands for the receptors. Nevertheless, many signals are mapped to interactions of steroid receptor motifs with heterologous regulatory proteins. Some of those proteins interact with the glucocorticoid receptor and other factors essential to cell fate. Interactions of steroid receptor domain motifs with heterologous proteins affect specific target pathways; consequently, manipulation of specified protein modules complexed with steroid receptors may be a next major step for enhancing molecular targeted therapeutics. In the future, intervention at specific sections of receptor primary sequence may prove therapeutically more efficient in targeting pathways of choice than ligand selectivity can be.  相似文献   

17.
Normal reproductive development depends on the interplay of steroid hormones with their receptors at specific tissue sites. The concentrations of hormone ligands in the circulation and at target sites are maintained through coordinated regulation on steroid biosynthesis and degradation. Changed bioavailability of steroids, through alteration of steroidogenesis or biotransformation rates, leads to changes in endocrine function. Steroid hormones lose their receptor reactivity in most cases when they are bound to binding proteins, while metabolic conversion can result in either active or inactive metabolites. Hydroxylation by cytochrome P450 (CYP) enzymes and conjugation with glucuronide and sulfate are among the major hepatic pathways of steroid inactivation. The expression of these biotransformation enzymes can be induced by many xenobiotics. The barbiturate phenobarbital and the environmental toxicant 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) are among the well characterized inducers for the CYP 2B and 3A enzymes and selected conjugation enzymes. The induction of the steroid biotransformation enzymes is partly mediated through the activation of a group of nuclear receptors including the glucocorticoid receptor, the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the peroxisome proliferator activated receptors (PPAR). Drug or chemical-induced increases in hepatic enzyme activities are often a basis for drug-drug interactions that lead to enhanced elimination and reduced therapeutic efficacy of steroidal drugs. The effects of enzyme induction on endogenous steroid clearance, along with its possible consequence, are less well understood. While enzyme induction by xenobiotics may increase clearance of the endogenous steroid, regulatory mechanisms for steroid homeostasis may adapt and compensate for altered clearance.  相似文献   

18.
Several epidemiological studies have reported that gender differences exist in clinical and biological manifestations of human lung diseases. In particular, women are far more likely to develop both neoplastic and non-neoplastic lung diseases than men. This gender difference above suggests that sex steroid may be involved in the pathogenesis of various lung diseases. These sex steroids mediate their effects through sex steroid receptors including estrogen receptors (ER) i.e. ERα and ERβ progesterone receptors (PR) i.e. PR-A and PR-B and androgen receptors (ARs), all of which have been reported to be expressed in lung tissue. Therefore it becomes important to clarify the potential roles of sex steroid receptor in both neoplastic and non-neoplastic lung diseases toward improved treatment options for the patients. In this review, we summarized a number of studies in humans and experimental animals that have identified possible roles of sex steroids in respiratory physiology and pathology.  相似文献   

19.
20.
Neuropsychopharmacological properties of neuroactive steroids.   总被引:4,自引:0,他引:4  
R Rupprecht  F Holsboer 《Steroids》1999,64(1-2):83-91
In addition to the well-known genomic effects of steroid molecules via intracellular steroid receptors, certain steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been thought not to interact with intracellular receptors, but enhance gamma-aminobutyric acid (GABA)-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABA(A) receptors. We demonstrated that these neuroactive steroids can regulate also gene expression via the progesterone receptor after intracellular oxidation. Thus, in physiological concentrations these neuroactive steroids regulate neuronal function through their concurrent influence on transmitter-gated ion channels and gene expression. When administered in animal studies, memory-enhancing effects have been shown for pregnenolone sulfate and DHEA. The 3alpha-hydroxy ring A-reduced neuroactive steroids predominantly display anxiolytic, anticonvulsant, and hypnotic activities. Sleep studies evaluating the effects of progesterone as a precursor molecule for these neuroactive steroids revealed a sleep electroencephalogram pattern similar to that obtained by the administration of benzodiazepines. These findings extend the concept of a "cross-talk" between membrane and nuclear hormone effects and provide a new role for the therapeutic application of these steroids in neurology and psychiatry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号