共查询到20条相似文献,搜索用时 0 毫秒
1.
海洋酸化对海洋无脊椎动物的影响研究进展 总被引:1,自引:0,他引:1
人源二氧化碳(CO2)的大量排放,导致空气中CO2浓度越来越高,其中大约1/4至1/3被海洋吸收。过多CO2在海水中的溶解,除引起海水p H值降低外,还导致海水中碳酸盐平衡体系的变化,即"海洋酸化"现象。很多海洋无脊椎动物不但在海洋生态系统中发挥重要作用,还是重要的水产养殖种,因此具有重要的生态与经济价值。由于海洋无脊椎动物的生活史在海水中完成,因此海洋环境的变化极易对其造成影响。大量研究已证实海洋酸化能对多种海洋无脊椎动物的受精、发育、生物钙化、基因表达等生命活动产生显著影响。综述了近年来海洋酸化对海洋无脊椎动物影响研究的相关报道,归纳了其对海洋无脊椎动物不同生命活动的影响,分析了其生态学效应,探讨了现有研究在方法创新、内容拓展以及机理分析等方面存在的局限与不足,并展望了海洋酸化对海洋无脊椎动物影响研究的发展方向。 相似文献
2.
Although seagrasses and marine macroalgae (macro‐autotrophs) play critical ecological roles in reef, lagoon, coastal and open‐water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro‐autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2], and lower carbonate [CO32?] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro‐autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3?; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2‐only users, lead us to conclude that photosynthetic and growth rates of marine macro‐autotrophs are likely to increase under elevated [CO2] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up‐regulate stress‐response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H+ and DIC. These fluxes control micro‐environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA, and it is likely that fleshy macroalgae will dominate in a higher CO2 ocean; therefore, it is critical to elucidate the research gaps identified in this review. 相似文献
3.
Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms 总被引:3,自引:0,他引:3
Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses. 相似文献
4.
Veronika A. Franzova Colin D. MacLeod Tianxin Wang Christopher D.G. Harley 《International journal for parasitology》2019,49(13-14):1015-1021
Human activities have caused an increase in atmospheric CO2 over the last 250 years, leading to unprecedented rates of change in seawater pH and temperature. These global scale processes are now commonly referred to as ocean acidification and warming, and have the potential to substantially alter the physiological performance of many marine organisms. It is vital that the effects of ocean acidification and warming on marine organisms are explored so that we can predict how marine communities may change in future. In particular, the effect of ocean acidification and warming on host-parasite dynamics is poorly understood, despite the ecological importance of these relationships. Here, we explore the response of one himasthlid trematode, Himasthla sp., an abundant and broadly distributed species of marine parasite, to combinations of elevated temperature and pCO2 that represent physiological extremes, pre-industrial conditions, and end of century predictions. Specifically, we quantified the life span of the free-living cercarial stage under elevated temperature and pCO2, focussing our research on functional life span (the time cercariae spend actively swimming) and absolute life span (the period before death). We found that the effects of temperature and pCO2 were complex and interactive. Overall, increased temperature negatively affected functional and absolute life span, e.g. across all pCO2 treatments the average time to 50% cessation of active swimming was approximately 8 h at 5 °C, 6 h at 15 °C, 4 h at 25 °C, and 2 h at 40 °C. The effect of pCO2, which significantly affected absolute life span, was highly variable across temperature treatments. These results strongly suggest that ocean acidification and warming may alter the transmission success of trematode cercariae, and potentially reduce the input of cercariae to marine zooplankton. Either outcome could substantially alter the community structure of coastal marine systems. 相似文献
5.
Newbold LK Oliver AE Booth T Tiwari B Desantis T Maguire M Andersen G van der Gast CJ Whiteley AS 《Environmental microbiology》2012,14(9):2293-2307
Since industrialization global CO(2) emissions have increased, and as a consequence oceanic pH is predicted to drop by 0.3-0.4 units before the end of the century - a process coined 'ocean acidification'. Consequently, there is significant interest in how pH changes will affect the ocean's biota and integral processes. We investigated marine picoplankton (0.2-2?μm diameter) community response to predicted end of century CO(2) concentrations, via a 'high-CO(2) ' (~?750?ppm) large-volume (11?000?l) contained seawater mesocosm approach. We found little evidence of changes occurring in bacterial abundance or community composition due to elevated CO(2) under both phytoplankton pre-bloom/bloom and post-bloom conditions. In contrast, significant differences were observed between treatments for a number of key picoeukaryote community members. These data suggested a key outcome of ocean acidification is a more rapid exploitation of elevated CO(2) levels by photosynthetic picoeukaryotes. Thus, our study indicates the need for a more thorough understanding of picoeukaryote-mediated carbon flow within ocean acidification experiments, both in relation to picoplankton carbon sources, sinks and transfer to higher trophic levels. 相似文献
6.
Philip L. Munday Jennifer M. Donelson Danielle L. Dixson Geoff G. K. Endo 《Proceedings. Biological sciences / The Royal Society》2009,276(1671):3275-3283
Little is known about how fishes and other non-calcifying marine organisms will respond to the increased levels of dissolved CO2 and reduced sea water pH that are predicted to occur over the coming century. We reared eggs and larvae of the orange clownfish, Amphiprion percula, in sea water simulating a range of ocean acidification scenarios for the next 50–100 years (current day, 550, 750 and 1030 ppm atmospheric CO2). CO2 acidification had no detectable effect on embryonic duration, egg survival and size at hatching. In contrast, CO2 acidification tended to increase the growth rate of larvae. By the time of settlement (11 days post-hatching), larvae from some parental pairs were 15 to 18 per cent longer and 47 to 52 per cent heavier in acidified water compared with controls. Larvae from other parents were unaffected by CO2 acidification. Elevated CO2 and reduced pH had no effect on the maximum swimming speed of settlement-stage larvae. There was, however, a weak positive relationship between length and swimming speed. Large size is usually considered to be advantageous for larvae and newly settled juveniles. Consequently, these results suggest that levels of ocean acidification likely to be experienced in the near future might not, in isolation, significantly disadvantage the growth and performance of larvae from benthic-spawning marine fishes. 相似文献
7.
人类活动引起的大气CO2浓度的升高,除了使全球温度升高外,导致的另一个严重生态问题——海洋酸化(Ocean acidification,OA),受到社会各界包括科研界的高度重视,该领域的大部分研究结果都是在近十年才发表出来的,目前还有很多需要解决的问题。海洋酸化的研究涉及到很多学科的交叉包括化学、古生物学、生态学、生物地球化学等等。在生物学领域,海洋酸化主要围绕敏感物种,例如由碳酸钙形成贝壳或外骨骼的贝类,珊瑚礁群体等。鱼类作为海洋脊椎动物的代表生物类群,自身具有一定的酸碱平衡调节能力,但相关海洋酸化方向的研究并不是很多。尽管人们对于海洋酸化对鱼类的影响了解甚少,这并不说明海洋酸化对鱼类没有作用或者效应小,在相关研究逐步展开的同时,发现鱼类同样受到海洋酸化的危害,几乎涉及到鱼类整个生活史和几乎大部分生理过程,尤其是早期生活史的高度敏感。因此就目前国内外对此领域研究结果做综述,以期待业界同行能够对海水鱼类这个大的类群引起重视。 相似文献
8.
It has been proposed that crustaceans should be excluded from a comparison of biological responses to ocean acidification among organisms with different calcium carbonate (CaCO3 ) forms in their calcified structures. We re-analysed our data without crustaceans and found high variation in organismal responses within CaCO3 categories. We conclude that the CaCO3 polymorph alone does not predict sensitivity, and a consideration of functional differences among organisms is necessary for predicting variation in response to acidification. 相似文献
9.
Increased atmospheric CO2 will have a twofold impact on future marine ecosystems, increasing global sea surface temperatures and uptake of CO2 (Ocean Acidification). Many experiments focus on the investigation of one of these stressors, but under realistic future climate predictions, these stressors may have interactive effects on individuals. Here, we investigate the effect of warming and acidification in combination. We test for interactive effects of potential near-future (2100) temperature (+2 to 3 °C) and pCO2 (~860–940 μAtm) levels on the physiology of the tropical echinoid Echinometra sp. A. The greatest reduction in growth was under simultaneous temperature and pH/pCO2 stress (marginally significant temperature × pH/pCO2 interaction). This was mirrored by the physiological data, with highest metabolic activity (measured as respiration and ammonium excretion) occurring at the increased temperature and pCO2 treatment, although this was not significant for excretion. The perivisceral coelomic fluid pH was ~7.5–7.6, as typical for echinoids, and showed no significant changes between treatments. Indicative of active calcification, internal magnesium and calcium concentrations were reduced compared to the external medium, but were not different between treatments. Gonad weight was lower at the higher temperature, and this difference was more distinct and statistically significant for males. The condition of the gonads assessed by histology declined in increased temperature and low pH treatments. The Echinometra grew in all treatments indicating active calcification of their magnesium calcite tests even as carbonate mineral saturation decreased. Our results indicate that the interactive temperature and pH effects are more important for adult echinoids than individual stressors. Although adult specimens grow and survive in near-future conditions, higher energy demands may influence gonad development and thus population maintenance. 相似文献
10.
Alyce M. Hancock Catherine K. King Jonathan S. Stark Andrew McMinn Andrew T. Davidson 《Ecology and evolution》2020,10(10):4495-4514
Southern Ocean waters are among the most vulnerable to ocean acidification. The projected increase in the CO2 level will cause changes in carbonate chemistry that are likely to be damaging to organisms inhabiting these waters. A meta‐analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60°S to ocean acidification. This meta‐analysis showed that ocean acidification negatively affects autotrophic organisms, mainly phytoplankton, at CO2 levels above 1,000 μatm and invertebrates above 1,500 μatm, but positively affects bacterial abundance. The sensitivity of phytoplankton to ocean acidification was influenced by the experimental procedure used. Natural, mixed communities were more sensitive than single species in culture and showed a decline in chlorophyll a concentration, productivity, and photosynthetic health, as well as a shift in community composition at CO2 levels above 1,000 μatm. Invertebrates showed reduced fertilization rates and increased occurrence of larval abnormalities, as well as decreased calcification rates and increased shell dissolution with any increase in CO2 level above 1,500 μatm. Assessment of the vulnerability of fish and macroalgae to ocean acidification was limited by the number of studies available. Overall, this analysis indicates that many marine organisms in the Southern Ocean are likely to be susceptible to ocean acidification and thereby likely to change their contribution to ecosystem services in the future. Further studies are required to address the poor spatial coverage, lack of community or ecosystem‐level studies, and the largely unknown potential for organisms to acclimate and/or adapt to the changing conditions. 相似文献
11.
Kristy J. Kroeker Rebecca L. Kordas Ryan Crim Iris E. Hendriks Laura Ramajo Gerald S. Singh Carlos M. Duarte Jean‐Pierre Gattuso 《Global Change Biology》2013,19(6):1884-1896
Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta‐analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait‐based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi‐species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single‐species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. 相似文献
12.
海洋酸化对珊瑚礁生态系统的影响研究进展 总被引:1,自引:0,他引:1
目前,大气CO2浓度的升高已导致海水pH值比工业革命前下降了约0.1,海水碳酸盐平衡体系随之变化,进而影响珊瑚礁生态系统的健康。近年来的研究表明海洋酸化导致造礁石珊瑚幼体补充和群落恢复更加困难,造礁石珊瑚和其它造礁生物(Reef-building organisms)钙化率降低甚至溶解,乃至影响珊瑚礁鱼类的生命活动。虽然海洋酸化对造礁石珊瑚光合作用的影响不显著,但珊瑚-虫黄藻共生体系会受到一定影响。建议选择典型海区进行长期系统监测,结合室内与原位模拟试验,从个体、种群、群落到系统不同层面,运用生理学和分子生物学技术,结合生态学研究手段,综合研究珊瑚的相应响应,以期深入认识海洋酸化对珊瑚礁生态系统健康(例如珊瑚白化)的影响及其效应。 相似文献
13.
Ocean warming and acidification alter the physiological performance and behaviour of many small‐bodied fishes, yet the potential interactive effects of these stressors on larger predators remains poorly understood. In particular, the combined effects of elevated temperature on metabolism and of elevated CO2 on the behaviour of large predators may not only affect their foraging behaviour, but also the communities in which their prey live. We used a factorial design to assess how projected warming and acidification create synergies or antagonisms between physiological and behavioural processes, such as swimming activity and feeding behaviour through odour tracking and vision. Temperature increased swimming activity during feeding, independent of CO2. Although temperature also increased motivational drive to locate and accept prey, elevated CO2 negated chemical and visual behavioural responses that enable effective hunting. Fundamental to these effects was the negligible effect of high CO2 in isolation, but its power to negate the positive effects of temperature when brought in conjunction. The reduced potential to locate prey due to the interactive effects of ocean acidification and warming, in combination with increases in energetic demand, suggests that energetic tradeoffs will be needed for sharks to sustain themselves at an individual and population level in a future ocean. 相似文献
14.
Differences in the sensitivity of marine species to ocean acidification will influence the structure of marine communities in the future. Reproduction is critical for individual and population success, yet is energetically expensive and could be adversely affected by rising CO2 levels in the ocean. We investigated the effects of projected future CO2 levels on reproductive output of two species of coral reef damselfish, Amphiprion percula and Acanthochromis polyacanthus. Adult breeding pairs were maintained at current-day control (446 μatm), moderate (652 μatm) or high CO2 (912 μatm) for a 9-month period that included the summer breeding season. The elevated CO2 treatments were consistent with CO2 levels projected by 2100 under moderate (RCP6) and high (RCP8) emission scenarios. Reproductive output increased in A. percula, with 45–75 % more egg clutches produced and a 47–56 % increase in the number of eggs per clutch in the two elevated CO2 treatments. In contrast, reproductive output decreased at high CO2 in Ac. polyacanthus, with approximately one-third as many clutches produced compared with controls. Egg survival was not affected by CO2 for A. percula, but was greater in elevated CO2 for Ac. polyacanthus. Hatching success was also greater for Ac. polyacanthus at elevated CO2, but there was no effect of CO2 treatments on offspring size. Despite the variation in reproductive output, body condition of adults did not differ between control and CO2 treatments in either species. Our results demonstrate different effects of high CO2 on fish reproduction, even among species within the same family. A greater understanding of the variation in effects of ocean acidification on reproductive performance is required to predict the consequences for future populations of marine organisms. 相似文献
15.
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta‐analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life‐history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single‐stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible. 相似文献
16.
17.
Sarah L. Eggers Aleksandra M. Lewandowska Joana Barcelos e Ramos Sonia Blanco‐Ameijeiras Francesca Gallo Birte Matthiessen 《Global Change Biology》2014,20(3):713-723
Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full‐factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans. 相似文献
18.
海洋酸化生态学研究进展 总被引:4,自引:1,他引:4
工业革命以来,人类排放的大量二氧化碳引起温室效应的同时,也被海洋吸收使得全球海洋出现了严重的酸化。海洋酸化及伴随的海水碳酸盐化学体系的变化对海洋生物产生深远的影响。以海洋酸化对钙化作用和光合作用的影响为重点,总结了近年来关于海洋酸化的研究,介绍了海洋中不同生态系统对海洋酸化的响应。一方面,海水中CO23-浓度和碳酸钙饱和度的降低对海洋钙化生物造成严重损害,生活在高纬的冷水珊瑚和翼足目等文石生产者是最早的受害者;贝类和棘皮动物在钙化早期对海洋酸化尤其敏感,其幼体存活率受到海洋酸化的严重制约。另一方面,CO2浓度的增加能促进海洋植物的光合作用和生长,增加初级生产力,改变浮游植物的群落组成。此外,海洋酸化可以促进固氮和脱氮作用同时削弱硝化作用,改变溶氧浓度分布和金属的生物可利用性,从而对海洋生物产生间接影响。海洋酸化对海洋生态系统的影响机制复杂,影响程度深远。为了能准确的评估海洋酸化的生态学效应,需要更全面深入的研究。 相似文献
19.
20.
Currently, ocean acidification is occurring at a faster rate than at any time in the last 300 million years, posing an ecological challenge to marine organisms globally. There is a critical need to understand the effects of acidification on the vulnerable larval stages of marine fishes, as there is potential for large ecological and economic impacts on fish populations and the human economies that rely on them. We expand upon the narrow taxonomic scope found in the literature today, which overlooks many life history characteristics of harvested species, by reporting on the larvae of Rachycentron canadum (cobia), a large, highly mobile, pelagic‐spawning, widely distributed species with a life history and fishery value contrasting other species studied to date. We raised larval cobia through the first 3 weeks of ontogeny under conditions of predicted future ocean acidification to determine effects on somatic growth, development, otolith formation, swimming ability, and swimming activity. Cobia exhibited resistance to treatment effects on growth, development, swimming ability, and swimming activity at 800 and 2100 μatm pCO2. However, these scenarios resulted in a significant increase in otolith size (up to 25% larger area) at the lowest pCO2 levels reported to date, as well as the first report of significantly wider daily otolith growth increments. When raised under more extreme scenarios of 3500 and 5400 μatm pCO2, cobia exhibited significantly reduced size‐at‐age (up to 25% smaller) and a 2–3 days developmental delay. The robust nature of cobia may be due to the naturally variable environmental conditions this species currently encounters throughout ontogeny in coastal environments, which may lead to an increased acclimatization ability even during long‐term exposure to stressors. 相似文献