首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we investigated the morphology and pairing behavior of sex lampbrush chromosomes of XX and ZW females of Rana rugosa from five localities in Japan. Whereas lampbrush chromosomes of XX females from Hiroshima and Isehara had subterminally located centromeres and showed remarkable similarity, those of XX females from Hamakita had the centromeres in the middle. Analysis of landmark configurations revealed that chromosome Xq of Hamakita females closely resembled a part of Xq of Hiroshima and Isehara females, whereas Xp of Hamakita females was inverted compared with the other part of Xq of Hiroshima and Isehara females. Z chromosomes from Kanazawa and Niigata closely resembled the Hiroshima X, whereas the W closely resembled the Hamakita X. XX pairings from Hiroshima, Isehara, and Hamakita were found to be joined by one to four chiasmata at various points all along the axis in both the short and long arms, whereas chromosomal pairs from Kanazawa and Niigata showed only one chiasma between Zp and the distal region of Wq. From these findings we conclude that (1) both the W and the Hamakita X must have evolved from the more primitive Hiroshima and Isehara X chromosomes by a series of pericentric inversions; and (2) females distributed in Hamakita possess two X chromosomes similar to the W, suggesting that either sex-determining or sex-modifying genes on the Hamakita X are clearly different from those on the Kanazawa and Niigata W chromosome. Received: 27 February 1996; in revised form: 22 May 1996 / Accepted: 25 May 1996  相似文献   

2.
Sex chromosomes of the Japanese frog Rana rugosa are heteromorphic in the male (XX/XY) or in the female (ZZ/ZW) in two geographic forms, whereas they are still homomorphic in both sexes in two other forms (Hiroshima and Isehara types). To make clear the origin and differentiation mechanisms of the heteromorphic sex chromosomes, we isolated a sex-linked gene, ADP/ATP translocase, and constructed a phylogenetic tree of the genes derived from the sex chromosomes. The tree shows that the Hiroshima gene diverges first, and the rest form two clusters: one includes the Y and Z genes and the other includes the X, W, and Isehara genes. The Hiroshima gene shares more sequence similarity with the Y and Z genes than with the X, W, and Isehara genes. This suggests that the Y and Z sex chromosomes originate from the Hiroshima type, whereas the X and W chromosomes originate from the Isehara-type sex chromosome. Thus, we infer that hybridization between two ancestral forms, with the Hiroshima-type sex chromosome in one and the Isehara-type sex chromosome in the other, was the primary event causing differentiation of the heteromorphic sex chromosomes.   相似文献   

3.
The heteromorphic chromosomes 1 of Triturus cristatus carnifex and T. marmoratus were studied in mitotic metaphase after staining with the Giemsa C-banding technique and with the fluorochromes, DAPI (AT-specific) and mithramycin (GC-specific). They were also examined in the lampbrush form under phase-contrast before fixation and after fixation and staining with Giemsa. Chromosomes 1 of T.c. carnifex are asynaptic and achiasmatic throughout most of their long arms. They are also heteromorphic in most of their long arms for the patterns of Giemsa and fluorochrome staining and the distribution of distinctive lampbrush loops. The heteromorphic regions correspond to the regions that are asynaptic and achiasmatic. They stain more strongly with mithramycin and more weakly with DAPI than the remainder of the chromosomes, signifying that their DNA is relatively rich in GC. The patterns of staining with Giemsa and fluorochromes and the distributions of distinctive lateral loops vary from one animal to another in the same species and even in the same population. The asynaptic and achiasmatic regions of chromosomes 1 in T. marmoratus extend throughout the whole of the long arms and well beyond the heterochromatic region. Chiasmata form only in the short arm and occasionally in the short euchromatic segment at the tip of the long arms. The staining patterns of chromosomes 1 in T. marmoratus differ from those in T.c. carnifex although, like carnifex, their DNA is relatively GC-rich. The chromosomes 1 of T. marmoratus are more submetacentric than those of T.c. carnifex. In T. marmoratus chromosome 1B is about 12% shorter than 1A. There is a short paracentric inversion heterozygosity in the long arm of chromosome 1B in T. marmoratus which probably accounts for the lack of chiasmata in the euchromatin that separates the centromere from the start of the heterochromatin. In both carnifex and marmoratus, embryos that are homomorphic for chromosome 1 arrest and die at the late tailbud stage of development. The same applies to F1 hybrid embryos T.c. carnifex x T. marmoratus, and this has permitted identification of chromosomes 1A and 1B in both species. There is no correspondence between patterns of Giemsa or fluorochrome staining of the heteromorphic regions of chromosome 1 and any feature of the lampbrush chromosomes. However, the short euchromatic ends of the long arms of chromosomes 1 in both species are distinguished in the lampbrush form by a series of uniformly small loops of fine texture associated with very small chromomeres. The Giemsa C-staining patterns of both chromosomes 1A and 1B are different in each of the four subspecies of T. cristatus. T.c. karelinii stands out by having unusually large masses of Giemsa C-staining centromeric heterochromatin on all but 1 of its 12 chromosomes. A scheme is proposed for the evolution of chromosome 1 in T. cristatus and T. marmoratus, based on all available cytological and molecular data.  相似文献   

4.
Stahlavsky F  Kral J 《Hereditas》2004,140(1):49-60
Karyotypes of pseudoscorpions (Arachnida, Pseudoscorpiones) are largely unknown. Here we describe for the first time karyotypes of the suborder Epiocheirata, represented by 9 European species of two genera of Chthoniidae, Chthonius and Mundochthonius. Diploid chromosome numbers of males range from 21 to 37. Karyotypes of both genera differ substantially. Acrocentric chromosomes predominate in karyotypes of the genus Chthonius, whereas M. styriacus exhibits a predominance of metacentric chromosomes. These differences suggest that the two genera belong probably to distant branches of the family Chthoniidae. It is proposed that karyotype evolution of the genus Chthonius was characterised by a reduction of chromosome numbers by tandem and centric fusions as well as gradual conversion of acrocentric chromosomes to biarmed ones, mostly by pericentric inversions. A tendency towards reduced chromosome numbers is evident in the subgenus Ephippiochthonius. All species display X0 sex chromosome system that is probably ancestral in pseudoscorpions. The X chromosome exhibits conservative morphology. It is metacentric in all species examined, and in the majority of them, a subterminal secondary constriction was found at one of its arms. In contrast to chthoniids, secondary constriction was not reported on sex chromosomes of other pseudoscorpions. Analysis of prophase I chromosomes in males revealed an achiasmatic mode of meiosis. Findings of the achiasmatic meiosis in both genera, Chthonius and Mundochthonius, indicate that this mode of meiosis might be characteristic of the family Chthoniidae. Amongst arachnids, achiasmatic meiosis has only been described in some scorpions, acariform mites, and spiders.  相似文献   

5.
Chromosome banding in amphibia   总被引:4,自引:1,他引:3  
The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.  相似文献   

6.
Lampbrush chromosomes isolated from the germinal vesicle of medium sized oocytes can be individually identified by differences in two characters: (1) chromosome regions rich in well developed loops, and (2) number and position of spheres. Actually the lateral loops are not all equally extended, but those which are inserted in a certain region of the axis of some chromosomes are more developed and sometimes are loaded with dense and copious matrix; chiasmata do not occur inside these regions. One or more spheres are present on eight chromosomes in the complement (chromosomes I–VI, VIII and X): the total number of spheres inserted on S. salamandra lampbrush chromosomes is the highest among the salamandrid species studied so far. These landmarks as well as the maximally developed normal loops are schematically drawn on the maps of the single lampbrush chromosomes. The length of the maps corresponds to the mean value of the lengths of each chromosome relative to that of chromosome XII, taken as 100 units long.Also bivalents from first metaphase spermatocytes have been analysed: they are generally ring-shaped with two terminal or subterminal chiasmata.  相似文献   

7.
8.
Two subsets of lateral loops scattered on lampbrush chromosomes of the newtPleurodeles waltl were characterized. One group was identified by labelling with a monoclonal antibody (A1). The second group was identified by the ability of the loops to be induced by heat treatment. Three loops of each subset were mapped on a short region of the two homologues of lampbrush bivalent IV. These regions appear to be heteromorphic because the six loops are always heterozygous. Five loops are found on one homologue and the sixth on the partner. The distribution of these markers in phenotypic females corresponding to the three sexual genotypes ZW, WW and ZZ shows an absolute correlation of the five loop group with the W chromosome and of the other loop with the Z chromosome. Therefore the heteromorphic regions of the homologues correspond to the differential segments of the heterochromosomes. The identification of a trisomic ZZW female suggests that the W chromosome bears female sex determinants. Furthermore the results show that heat induces loop development and that under normal conditions giant loop development is influenced by the sexual genotype.  相似文献   

9.
10.
Spread pachytene nuclei of codling moth Cydia pomonella (Linnaeus) (Lep., Tortricidae) females of a Syrian strain (SY) were used to investigate chromomere patterns of chromosome bivalents and determine their length. The karyotype of female codling moths consists of 28 chromosome bivalents, of which seven are clearly distinguishable using chromosome length and the number and size of the chromomeres in the pachytene stage. One autosome bivalent has two nucleolar organizing regions (NORs) that are located at the opposite ends of the chromosome and appear as distinct structural landmarks. In female codling moths, the WZ sex chromosome bivalent was easily identified in pachytene oocytes according to the heterochromatic thread of the W chromosome. This study contributed to the knowledge and identification of pachytene chromosomes of female codling moths.  相似文献   

11.
Summary The nature of genome change during polyploid evolution was studied by analysing selected species within the tribe Triticeae. The levels of genome changes examined included structural alterations (translocations, inversions), heterochromatinization, and nucleotide sequence change in the rDNA regions. These analyses provided data for evaluating models of genome evolution in polyploids in the genus Triticum, postulated on the basis of chromosome pairing at metaphase I in interspecies hybrids.The significance of structural chromosome alterations with respect to reduced MI chromosome pairing in interspecific hybrids was assayed by determining the incidence of heterozygosity for translocations and paracentric inversions in the A and B genomes of T. timopheevii ssp. araraticum (referred to as T. araraticum) represented by two lines, 1760 and 2541, and T. aestivum cv. Chinese Spring. Line 1760 differed from Chinese Spring by translocations in chromosomes 1A, 3A, 4A, 6A, 7A, 3B, 4B, 7B and possibly 2B. Line 2541 differed from Chinese Spring by translocations in chromosomes 3A, 6A, 6B and possibly 2B. Line 1760 also differed from Chinese Spring by paracentric inversions in arms 1AL and 4AL whereas line 2541 differed by inversions in 1BL and 4AL (not all chromosomes arms were assayed). The incidence of structural changes in the A and B genomes did not coincide with the more extensive differentiation of the B genomes relative to the A genomes as reflected by chromosome pairing studies.To assay changing degrees of heterochromatinization among species of the genus Triticum, all the diploid and polyploid species were C-banded. No general agreement was observed between the amount of heterochromatin and the ability of the respective chromosomes to pair with chromosomes of the ancestral species. Marked changes in the amount of heterochromatin were found to have occurred during the evolution of some of the polyploids.The analysis of the rDNA region provided evidence for rapid fixation of new repeated sequences at two levels, namely, among the 130 bp repeated sequences of the spacer and at the level of the repeated arrays of the 9 kb rDNA units. These occurred both within a given rDNA region and between rDNA regions on nonhomologous chromosomes. The levels of change in the rDNA regions provided good precedent for expecting extensive nucleotide sequence changes associated with differentiation of Triticum genomes and these processes are argued to be the principal cause of genome differentiation as revealed by chromosome pairing studies.  相似文献   

12.
Chiasmata in diplotene bivalents are located at the points of physical exchange (crossing-over) between homologous chromosomes. We have studied chiasma distribution within chicken lampbrush chromosome 1 to estimate the crossing-over frequency between chromosome landmarks. The position of the centromere and chromosome region 1q3.3-1q3.6 on lampbrush chromosome 1 were determined by comparative physical mapping of the TTAGGG repeats in the chicken mitotic and lampbrush chromosomes. The comparison of the chiasma (=crossing over)-based genetic distances on chicken chromosome 1 with the genetic linkage map obtained in genetic experiments showed that current genetic distances estimated by the high-resolution genetic mapping of the East Lansing, Compton, and Wageningen chicken reference populations are 1.2-1.9 times longer than those based on chiasma counts. Conceivable reasons for this discrepancy are discussed.  相似文献   

13.
The lampbrush chromosomes of the long-toed salamander, Ambystoma macrodactylum Baird, have been analysed and a map of the oocyte genome prepared. The location of C-bands and cold-induced-constrictions has been established in mitotic chromosomes and compared with the location of marker structures and chiasmata in several lampbrush bivalents. In the lampbrush chromosomes, C-bands are tentatively correlated with sphere-organizing loci and with regions of low chiasma frequency; cold-induced-constrictions are tentatively correlated with regions of high chiasma frequency. In general, in this salamander, C-bands do not coincide in position with cold-induced-constrictions. We have compared our results with those obtained by Callan (1966) in his investigation of chromosomes of the axolotl, Ambystoma mexicanum, and we present an analysis of the similarities and differences that are visible in the chromosome sets of these two ambystomatid species.  相似文献   

14.
P. Eberle 《Genetica》1964,35(1):34-46
InLocusta migratoria (XO),Mus musculus, Rattus norvegicus, Mesocricetus auratus, Cricetulus griseus andHomo sapiens typical sex vesicle structures are visible in early meiotic prophase stages up to pachynema. The structures include whole sex chromosomes or parts thereof. The heterologous parts and the solitary X chromosome ofLocusta pass diplonema, diakinesis and first metaphase nearly in mitotic shape. Entirely heterologous sex chromosomes are kept together by a unilateral and achiasmatic end connection. The sex vesicle is interpreted as a special structure of allocyclic sex chromosomes or parts of them, corresponding in early meiotic stages to the chromocenters of mitotic interphase nuclei. The formation of the sex vesicle is independent of the orthoploidy of nuclei and of the DNA ratio between autosomes and sex chromosomes. Heteropycnotic behaviour of sex chromosomes in spermatids is interpreted as a condition capable of blocking genetic activity, like in the Barr bodies of female somatic nuclei, giving equal chances of fertilization to both types of gametes.Based on a paper read at the XI International Congress of Genetics, of which an abstract has appeared in the congress proceedings, Genetics Today, Vol. 1, p. 299 (1963).  相似文献   

15.
The status of an extra univalent, if it is a B chromosome or an achiasmatic Y chromosome, associating with the X chromosome in male meiosis of Cacopsylla peregrina (Frst.) (Homoptera, Psylloidea) was analysed. One extra univalent was present in all males collected from three geographically well separated populations, it was mitotically stable, and showed precise segregation from the X chromosome. These findings led us to propose that the univalent represents in fact a Y chromosome. The behaviour of the X and Y chromosomes during meiotic prophase suggested that their regular segregation was based on an achiasmatic segregation mechanism characterised by a 'touch and go' pairing of segregating chromosomes at metaphase I. To explain the formation of the achiasmatic Y within an insect group with X0 sex chromosome system, it was suggested that the Y chromosome has evolved from a mitotically stable B chromosome that was first integrated into an achiasmatic segregation system with the X chromosome, and has later become fixed in the karyotype as a Y chromosome.  相似文献   

16.
The positions and general anatomical and histological characteristics of the gonads of Bipes biporus and B. canaliculatus are described. The amounts of DNA per haploid chromosome set have been measured in both species, the values being 1.83 and 2.0 pg for biporus and canaliculatus respectively. The karyotypes of both species are described on the basis of data from mitotic and meiotic metaphase chromosome sets and from lampbrush chromosomes. B. biporus has 10 macrochromosomes and 11 microchromosomes. B. canaliculatus has 11 macrochromosomes and 11 microchromosomes. The karyotypes of the two species differ distinctly with regard to the shapes of 3 of the macrochromosomes. Chiasma distribution is described for male meiosis in B. biporus. Studies of the lampbrush chromosomes of both species show the chiasma distribution in the female to be generally similar to that found in the male biporus. In B. canaliculatus, lampbrush chromosomes with maximally extended lateral loops are found in oocytes that are oblate spheroids measuring 0.7×1.0 mm along their short and long axes respectively, these being well before the start of the major phase of vitellogenesis. Smaller oocytes have more distinct chromomeres and shorter loops. Microchromosomes take the form of typical small lampbrush chromosomes in oocytes. There are at the most 1,000 chromomeres per haploid set of lampbrush chromosomes in B. canaliculatus. Chiasmata are described from lampbrush preparations in which the two half-bivalents are firmly attached to one another without evident association of their axes, indicating the possibility of chiasmate association between the DNA axes of lateral loops. There are remarkably few extrachromosomal nucleoli in Bipes oocytes, and its is suggested that this may indicate a level of ribosomal gene amplification that is much lower than that found in fish and Amphibia. The observations are particularly discussed in relation to current ideas concerning the structure and function of lampbrush chromosomes.  相似文献   

17.
The Oriental fruit fly, Batrocera dorsalis s.s. (Hendel) is one of the most destructive agricultural pests, belonging to a large group of difficult to distinguish morphologically species, referred as the B. dorsalis complex. We report here a cytogenetic analysis of two laboratory strains of the species and provide a photographic polytene chromosome map from larval salivary glands. The mitotic complement consists of six chromosome pairs including a heteromorphic sex (XX/XY) chromosome pair. Analysis of the polytene complement has shown a total of five polytene chromosomes (10 polytene arms) that correspond to the five autosomes. The most important landmarks of each polytene chromosome and characteristic asynapsis at a specific chromosomal region are presented and discussed. Chromosomal homology between B. dorsalis and Ceratitis capitata has been determined by comparing chromosome banding patterns. The detection of chromosome inversions in both B. dorsalis strains is shown and discussed. Our results show that the polytene maps presented here are suitable for cytogenetic analysis of this species and can be used for comparative studies among species of the Tephritidae family. They also provide a diagnostic tool that could accelerate species identification within the B. dorsalis complex and could shed light on the ongoing speciation in this complex. Polytene chromosome maps can facilitate the development of biological control methods and support the genome mapping project of the species that is currently in progress.  相似文献   

18.
Cytogenetic studies have been carried out in 39 specimens of C. apella of different origins. Three different morphologies, one affecting the long arm of chromosome 4 and two affecting pair 17, have been detected. In each case, they can be related by paracentric inversions. Heterochromatin polymorphisms affecting terminal or interstitial C+ regions have also been observed. The length of the terminal heterochromatic region in the long arms of chromosome 11 is variable in C. apella sp., in C. a. paraguayanus and absent in the C. a. nigritus specimens studied. Interstitial C + bands can be observed in the long arms of the biarmed chromosomes 4 and 6, and in the long arms of the acrocentric pairs 12, 13, 17, 18, 19, 20, and 21. Interstitial C + bands in the long arms of chromosomes 4, 12, 17, and 19 are present in all animals studied, although their size is variable, especially in the case of chromosomes 17 and 19. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The chromosome complement of hybrid males from the cross between Drosophila miranda female and D. persimilis male provides an interesting chromosomal situation where an autosome, the 3rd chromosome of D. persimilis, coexists with a homologue that developed into a sex chromosome, the X2 in D. miranda. Except for certain inversions and a few minor translocations, these two chromosomes (X2 and the 3rd) still look alike as polytene elements. However, in hybrid males pairing of the two chromosomes, the X2 and 3rd, is rare, while in female hybrids it occurs frequently. — 3H-TdR labeling shows that while the X2 and 3rd chromosomes replicate synchronously in hybrid female, in the hybrid male the former completes its replication earlier than the 3rd chromosome, as do the two arms of the X1 (XL and XR). The frequency and relative intensity of 3H-TdR labeling of each site of the X2 and that of the 3rd chromosome in hybrid males closely agree with those of the corresponding sites in the X2 of the miranda male and the 3rd chromosome of the persimilis male (or female), respectively. The results suggest that timing and rate of replication of the X2 are determined autonomously and follow the pattern in the respective parental species.  相似文献   

20.
Sex‐linked segregation distorters cause offspring sex ratios to differ from equality. Theory predicts that such selfish alleles may either go to fixation and cause extinction, reach a stable polymorphism or initiate an evolutionary arms race with genetic modifiers. The extent to which a sex ratio distorter follows any of these trajectories in nature is poorly known. Here, we used X‐linked sequence and simple tandem repeat data for three sympatric species of stalk‐eyed flies (Teleopsis whitei and two cryptic species of T. dalmanni) to infer the evolution of distorting X chromosomes. By screening large numbers of field and recently laboratory‐bred flies, we found no evidence of males with strongly female‐biased sex ratio phenotypes (SR) in one species but high frequencies of SR males in the other two species. In the two species with SR males, we find contrasting patterns of X‐chromosome evolution. T. dalmanni‐1 shows chromosome‐wide differences between sex‐ratio (XSR) and standard (XST) X chromosomes consistent with a relatively old sex‐ratio haplotype based on evidence including genetic divergence, an inversion polymorphism and reduced recombination among XSR chromosomes relative to XST chromosomes. In contrast, we found no evidence of genetic divergence on the X between males with female‐biased and nonbiased sex ratios in T. whitei. Taken with previous studies that found evidence of genetic suppression of sex ratio distortion in this clade, our results illustrate that sex ratio modification in these flies is undergoing recurrent evolution with diverse genomic consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号