首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recognition, discriminators use sensory information to make decisions. For example, honeybee (Apis mellifera) entrance guards discriminate between nest-mates and intruders by comparing their odours with a template of the colony odour. Comb wax plays a major role in honeybee recognition. We measured the rejection rates of nest-mate and non-nest-mate worker bees by entrance guards before and after a unidirectional transfer of wax comb from a 'comb donor' hive to a 'comb receiver' hive. Our results showed a significant effect that occurred in one direction. Guards in the comb receiver hive became more accepting of non-nest-mates from the comb donor hive (rejection decreased from 70 to 47%); however, guards in the comb donor hive did not become more accepting of bees from the comb receiver hive. These data strongly support the hypothesis that the transfer of wax comb increases the acceptance of non-nest-mates not by changing the odour of the bees, but by changing the template used by guards.  相似文献   

2.
3.
4.
5.
Parasites and pathogens are possibly key evolutionary forces driving recognition systems. However, empirical evidence remains sparse. The ubiquitous pioneering ant Formica fusca is exploited by numerous socially parasitic ant species. We compared the chemical cue diversity, egg and nest mate recognition abilities in two Finnish and two UK populations where parasite pressure is high or absent, respectively. Finnish populations had excellent egg and nest mate discrimination abilities, which were lost in the UK populations. The loss of discrimination behaviour correlates with a loss in key recognition compounds (C25-dimethylalkanes). This was not owing to genetic drift or different ecotypes since neutral gene diversity was the same in both countries. Furthermore, it is known that the cuticular hydrocarbon profiles of non-host ant species remain stable between Finland and the UK. The most parsimonious explanation for the striking difference in the cue diversity (number of C25-dimethylalkanes isomers) between the UK and Finland populations is the large differences in parasite pressure experienced by F. fusca in the two countries. These results have strong parallels with bird (cuckoo) studies and support the hypothesis that parasites are driving recognition cue diversity.  相似文献   

6.
7.
8.
Distinguishing nest-mates from non-nest-mates underlies key animal behaviours, such as territoriality, altruism and the evolution of sociality. Despite its importance, there is very little empirical support for such a mechanism in nature. Here we provide data that the nest-mate recognition mechanism in an ant is based on a colony-specific Z9-alkene signature, proving that surface chemicals are indeed used in ant nest-mate recognition as was suggested 100 years ago. We investigated the cuticular hydrocarbon profiles of 10 Formica exsecta colonies that are composed almost entirely of a Z9-alkene and alkane component. Then we showed that worker aggression is only elicited by the Z9-alkene part. This was confirmed using synthetic Z9-alkene and alkane blends matched to the individual colony profiles of the two most different chemical colonies. In both colonies, only glass beads with 'nest-mate' alkene profiles received reduced aggression. Finally, changing the abundance of a single Z9-alkene on live ants was shown to significantly increase the aggression they received from nest-mates in all five colonies tested. Our data suggest that nest-mate discrimination in the social insects has evolved to rely upon highly sensitive responses to relatively few compounds.  相似文献   

9.
2009年至2012年期间,在甘肃莲花山自然保护区共发现91个白腹短翅鸲(Hodgsonius phaenicuroides)巢,其中15巢被大杜鹃(Cuculus canorus)寄生,寄生率为16.48%。根据对13枚寄生的大杜鹃卵的观察,其中12枚卵色为浅蓝色,与白腹短翅鸲的深蓝绿色卵差异明显,仅1枚与白腹短翅鸲卵色一致。大杜鹃与白腹短翅鸲的卵重(t =11.208, df=38, P<0.001)和卵短径(t=0.970,df=38, P<0.001)差异极显著。白腹短翅鸲具有识别大杜鹃卵的能力,15巢中只有4巢接受寄生卵并继续孵化,7巢成功识别,剩余4巢无法确定是否识别。白腹短翅鸲为雌鸟单独孵卵,推测识别大杜鹃卵可能只与雌鸟有关。  相似文献   

10.
Sex recognition is important for successful reproduction and species usually have efficient systems of signals and responses to find the optimal potential mate. In the present study, we investigated the ability of males to recognize between sexes for two stimulus animals in Andrew's toad Bufo andrewsi, a species widely distributed in western China. When a male was placed with a gravid female and a similar-sized male, the male did not discriminate between them. When two males with distinct size differences were provided with a male, the male chose the larger one. In an experiment in which a gravid female and a different-sized male were offered a test male, males preferred the larger gravid females than smaller males. If a test male clasped a stimulus male, the stimulus male uttered a specific release call that caused the test male to release the stimulus male. These findings suggest that male B. andrewsi can recognize between the sexes probably based on male release calls, and prefer to mate with larger individuals with visual cues.  相似文献   

11.
A major challenge for social theory is to explain the importance of kin discrimination for the evolution of altruism. One way to assess the importance of kin discrimination is to test its effects on increasing relatedness within groups. The social amoeba Dictyostelium discoideum aggregates to form a fruiting body composed of dead stalk and live spores. Previous studies of a natural population showed that where D. discoideum occurs in the soil, multiple clones are often found in the same small soil samples. However, actual fruiting bodies usually contain only one clone. We here performed experiments to gauge the effect of kin-discriminatory segregation on increasing relatedness. We mixed co-occurring clones from this population using a relatedness level found in small soil samples. We found a lower proportion of uniclonal fruiting bodies and a lower level of relatedness compared with natural fruiting bodies. We found that the amount of relatedness increase attributable to kin-discriminatory segregation was small. These findings suggest a relatively minor influence of kin-discriminatory segregation on relatedness in D. discoideum. We discuss our results comparing with the results of previous studies, including those of wild clones and laboratory mutants. We ask why wild clones of D. discoideum exhibit a low degree of kin-discriminatory segregation, and what alternative factors might account for high relatedness in D. discoideum.  相似文献   

12.
Recent studies have demonstrated that bacteria possess an essential protein translocation system similar to mammalian signal recognition particle (SRP). Here we have identified the Ffh, a homologue of the mammalian SRP54 subunit from S. pneumoniae. Ffh is a 58-kDa protein with three distinct domains: an N-terminal hydrophilic domain (N-domain), a G-domain containing GTP/GDP binding motifs, and a C-terminal methionine-rich domain (M-domain). The full-length Ffh and a truncated protein containing N and G domains (Ffh-NG) were overexpressed in E. coli and purified to homogeneity. The full-length Ffh has an intrinsic GTPase activity with k(cat) of 0.144 min(-1), and the K(m) for GTP is 10.9 microM. It is able to bind to 4.5S RNA specifically as demonstrated by gel retardation assay. The truncated Ffh-NG has approximately the same intrinsic GTPase activity to the full-length Ffh, but is unable to bind to 4.5S RNA, indicating that the NG domain is sufficient for supporting intrinsic GTP hydrolysis, and that the M domain is required for RNA binding. The interaction of S. pneumoniae Ffh with its receptor, FtsY, resulted in a 20-fold stimulation in GTP hydrolysis. The stimulation was further demonstrated to be independent of the 4.5S RNA. In addition, a similar GTPase stimulation is also observed between Ffh-NG and FtsY, suggesting that the NG domain is sufficient and the M domain is not required for GTPase stimulation between Ffh and FtsY.  相似文献   

13.
Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRPs are highly conserved in invertebrates and vertebrates including fish. However, the biological function of teleost PGRP remains largely uninvestigated. In this study, we identified a PGRP homologue, SoPGLYRP-2, from red drum (Sciaenops ocellatus) and analyzed its activity and potential function. The deduced amino acid sequence of SoPGLYRP-2 is composed of 482 residues and shares 46-94% overall identities with known fish PGRPs. SoPGLYRP-2 contains at the C-terminus a single zinc amidase domain with conserved residues that form the catalytic site. Quantitative RT-PCR analysis detected SoPGLYRP-2 expression in multiple tissues, with the highest expression occurring in liver and the lowest expression occurring in brain. Experimental bacterial infection upregulated SoPGLYRP-2 expression in kidney, spleen, and liver in time-dependent manners. To examine the biological activity of SoPGLYRP-2, purified recombinant proteins representing the intact SoPGLYRP-2 (rSoPGLYRP-2) and the amidase domain (rSoPGLYRP-AD) were prepared from Escherichia coli. Subsequent analysis showed that rSoPGLYRP-2 and rSoPGLYRP-AD (i) exhibited comparable Zn2+-dependent peptidoglycan-lytic activity and were able to recognize and bind to live bacterial cells, (ii) possessed bactericidal effect against Gram-positive bacteria and slight bacteriostatic effect against Gram-negative bacteria, (iii) were able to block bacterial infection into host cells. These results indicate that SoPGLYRP-2 is a zinc-dependent amidase and a bactericide that targets preferentially at Gram-positive bacteria, and that SoPGLYRP-2 is likely to play a role in host innate immune defense during bacterial infection.  相似文献   

14.
Scents, detected through both the main and vomeronasal olfactory systems, play a crucial role in regulating reproductive behaviour in many mammals. In laboratory mice, female preference for airborne urinary scents from males (detected through the main olfactory system) is learnt through association with scents detected through the vomeronasal system during contact with the scent source. This may reflect a more complex assessment of individual males than that implied by laboratory mouse studies in which individual variation has largely been eliminated. To test this, we assessed female preference between male and female urine using wild house mice with natural individual genetic variation in urinary identity signals. We confirm that females exhibit a general preference for male over female urine when able to contact urine scents. However, they are only attracted to airborne urinary volatiles from individual males whose urine they have previously contacted. Even females with a natural exposure to many individuals of both sexes fail to develop generalized attraction to airborne male scents. This implies that information gained through contact with a specific male's scent is essential to stimulate attraction, providing a new perspective on the cues and olfactory pathways involved in sex recognition and mate assessment in rodents.  相似文献   

15.
16.
17.
The initial ingestion rates of Isochrysis galbana and Dunaliella primolecta by Oxyrrhis populations precultured separately on these phytoplanktonic prey were quantified and related to the chemosensory responses elicited in Oxyrrhis by the filtrate from live and heat killed prey cells. Despite evidence to suggest that Oxyrrhis shows specific distaste towards Isochrysis (but not Dunaliella) such that consumption of N-deplete Isochrysis halted in grazing experiments, positive chemotaxis was observed towards the cell-free filtrate from both species. These results suggest that while tactile cues encountered upon contact with Isochrysis and Dunaliella may enable Oxyrrhis to recognise differences between the two species, the chemosensory responses observed towards dissolved chemical cues derived from potential prey items are non-specific. That chemosensory and ingestion behaviours do not appear to be tightly coupled raises important questions concerning the ecological implications of chemotaxis in Oxyrrhis. Chemotaxis may enhance the overall efficiency of prey detection; however, when confronted with a variety of chemical stimuli (i.e. from a mixed-prey assemblage) Oxyrrhis may be unable to discern the difference between cues that originate from high quality, poor quality (or even toxic) prey items. The positive chemosensory responses observed towards a range of synthetic amino acid, amino sugar and ammonium solutions suggest that chemotaxis could facilitate the detection of solute gradients in prey deplete environments for direct exploitation via osmotrophy. Furthermore, the positive chemotaxis elicited by regenerated ammonium and compounds derived from heat killed conspecifics suggests that Oxyrrhis may release chemical cues which induce cannibalistic behaviour as a ‘life boat mechanism’ when no other suitable (non-self) prey items are available. Further work is required to explore the nature of the chemosensory apparatus and signal transduction pathways that mediate responses to dissolved chemical stimuli in Oxyrrhis and to investigate other sensory mechanisms that enable cells to recognise and differentiate between potential prey items.  相似文献   

18.
Recently, a novel Fe-hydrogenase from a high rate of hydrogen producing Enterobacter cloacae strain IIT-BT08 was identified and partially characterized. This 147 residue protein was found to be much smaller than previously known Fe-hydrogenases, yet retaining a high catalytic activity. We predicted the structure of this protein and found it to be structurally similar to one of the two sub-domains containing the catalytic H-cluster so far jointly present in all other Fe-hydrogenases. This novel architecture allows a tentative explanation of protein function with the high rate of catalytic activity being due to a missing regulatory sub-domain, presumably allowing higher enzymatic activity at the cost of greater exposure to oxygen inactivation. This new insight may improve our understanding of the molecular and functional organization of other, more complex Fe-hydrogenases.  相似文献   

19.
20.
In eukaryotes, the origin recognition complex (ORC) is essential for the initiation of DNA replication. The largest subunit of this complex (ORC1) has a regulatory role in origin activation. Here we report the cloning and functional characterization of Plasmodium falciparum ORC1 homolog. Using immunofluorescence and immunoelectron microscopy, we show here that PfORC1 is expressed in the nucleus during the late trophozoite and schizont stages where maximum amount of DNA replication takes place. Homology modelling of the carboxy terminal region of PfORC1 (781-1033) using Saccharomyces pombe Cdc6/Cdc18 homolog as a template reveals the presence of a similar AAA+ type nucleotide-binding fold. This region shows ATPase activity in vitro that is important for the origin activity. To our knowledge, this is the first evidence of an individual ORC subunit that shows ATPase activity. These observations strongly suggest that PfORC1 might be involved in DNA replication initiation during the blood stage of the parasitic life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号