首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability of the adaptive response to ionizing radiations in humans   总被引:5,自引:0,他引:5  
Human lymphocytes exposed to low doses of ionizing radiations from incorporated tritiated thymidine ([3H]dThd) or from X-rays become less susceptible to the induction of chromatid aberrations by high doses of X-rays. This indicates that low doses of ionizing radiation can produce an effect similar to the adaptive response observed with alkylating agents in prokaryotes, animal and plant cells. To determine whether there is individual variability in the adaptive response to ionizing radiations we exposed human lymphocytes from 18 different healthy donors to 'adapting' doses of [3H]dThd (0.01 microCi/ml) or X-rays (0.01 Gy) and subsequently to a 'challenge' treatment of 0.75 Gy of X-rays delivered 2 h before fixation. Four of the 18 donors did not show an adaptive response; in some cases in these individuals a synergistic response of increased, rather than decreased, damage was found. Two of these 4 donors showed no adaptive response in 3 subsequent experiments separated by 4-month intervals. This suggests that the human population exhibits a heterogeneity in the adaptive response to ionizing radiations which might be, at least in part, genetically determined.  相似文献   

2.
T Ikushima 《Mutation research》1989,227(4):241-246
Pretreatment with low doses of beta-rays from incorporated tritiated thymidine ([3H]dThd) or of Co-60 gamma-rays (1 or 5 cGy) rendered actively growing Chinese hamster V79 cells more resistant to the induction of micronuclei or sister-chromatid exchanges (SCEs) by a subsequent high dose of gamma-rays (1 Gy). This adaptive response to ionizing radiation (radio-adaptive response) can be induced by an optimal range of low doses of 3H beta-rays, but not by much lower or higher adapting doses. Full expression of the adaptive response induced by the exposure to low doses of 60Co gamma-rays occurred 4 h after the adapting dose. The cells pre-exposed to low doses of gamma-rays showed cross-resistance to challenge doses of gamma-rays themselves and also of mitomycin C (MMC) and near ultraviolet light (UV-B, 313 nm), but not to those of ethyl methanesulfonate (EMS) or cis-platinum (II) diammine dichloride (cisplatin) for SCE induction. These results suggest that the radio-adaptive response mechanistically couples to the repair network which copes with chromatin lesions induced by MMC and UV-B.  相似文献   

3.
Y N Yu  C Ding  Z N Cai  X R Chen 《Mutation research》1986,174(3):233-239
ADP-ribosyl transferase (ADPRT) is a DNA-dependent chromatin-associated enzyme which covalently attaches ADP-ribose moieties derived from NAD+ to protein acceptors to form poly(ADP-ribose). ADPRT activity is strongly stimulated by breaks in DNA, and it is suggested that its activity is required for efficient DNA excision repair. In this paper, a cell-cycle-dependent fluctuation of basal ADPRT activity was demonstrated by measuring it in permeabilized FL cells. The cell used was subjected to arginine starvation for 48 h before being released from the block by replacement of deficient medium with complete medium and cells in different proliferating stages were traced by [3H]TdR pulse labelling and obtained at different intervals after block release. The peak basal ADPRT activity appeared 4-6 h after the appearance of the peak of DNA synthesis. After treating the cells with MNNG (10(-4) M), MMS (10(-3)-10(-4) M) and 4NQO (10(-5) M) for 90 min just after release of the block, the ADPRT activity was markedly stimulated. It was further demonstrated that the effects of MNNG/4NQO and cell cycle influence on the level of poly(ADP-ribose) synthesis appear to be additive. While concerning MMS, quite a different pattern of ADPRT stimulation in the cell cycle was demonstrated, i.e., the activity of ADPRT stimulation of 10(-3) M MMS was found to be completely dependent on the basal ADPRT activity. In the cells with the highest basal ADPRT activity 12 h after block release, the MMS-induced ADPRT stimulation could not be observed. It was suggested that more than one pathway might be present in ADPRT stimulation induced by DNA-damaging chemicals, and the cells synchronized in late G1 stage might be the most suitable for demonstrating poly(ADP-ribose) synthesis after DNA damage.  相似文献   

4.
A possible role of poly(ADP-ribose) synthesis in modulating the response of V79 cells to DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MMS) was investigated. Inhibition of [3H]thymidine (dThd) incorporation into DNA and lowering of NAD+ levels in intact cells were employed as parameters of DNA-synthesis inhibition and poly(ADP-ribose) synthesis, respectively. Dose responses of these parameters were studied in cells 2 and 24 h after treatment with the methylating agents in medium with or without dThd. The initial inhibition of DNA synthesis was uniformly associated with stimulation of poly(ADP-ribose) synthesis whether the cells were treated with MNNG or MMS, incubated with or without 20 microM dThd which did not inhibit poly(ADP-ribose) synthesis, or incubated with 3 mM dThd which did inhibit the latter synthesis. By contrast, the DNA-synthesis inhibition detected 24 h after treatment with MNNG was not associated with poly(ADP-ribose) synthesis. These data suggest that (i) the mechanism of this later inhibition of DNA synthesis is different from that of the initial inhibition, (ii) DNA-synthesis inhibition does not stimulate poly(ADP-ribose) synthesis, and (iii) single-strand breaks, resulting from N-methylation of the DNA, stimulate poly(ADP-ribose) synthesis, which may produce the initial inhibition of DNA synthesis. The initial inhibition of DNA synthesis was not uniformly associated with mutagenesis and dThd facilitation of MNNG-induced cytotoxicity and mutagenesis. This indicates that O-methylation of DNA does not stimulate poly(ADP-ribose) synthesis. Our data suggest that, in V79 cells treated with methylating agents, poly(ADP-ribose) synthesis is stimulated by single-strand breaks, inhibits DNA synthesis, and thereby serves to allow time for repair of the DNA prior to replication.  相似文献   

5.
T Ochi  M Mogi  M Watanabe  M Ohsawa 《Mutation research》1984,137(2-3):103-109
Inducibility of chromosomal aberrations and cytotoxicity in cultured Chinese hamster cells by cadmium chloride (CdCl2) was investigated under 3 different treatment conditions: (i) 2-h treatment in MEM medium supplemented with 10% fetal bovine serum (MEM + 10% FBS) or (ii) in HEPES-buffered Hanks' solution (HEPES-Hanks), and (iii) continuous treatment for 24 h in MEM + 10% FBS. Two-h treatment with CdCl2 in HEPES-Hanks or continuous treatment for 24 h in MEM + 10% FBS was respectively 2 or 3 times more cytotoxic than 2-h treatment with the metal in MEM + 10% FBS. Continuous treatment for 24 h with a CdCl2 concentration in excess of 5 X 10(-6) M was too toxic to the cells to allow chromosomal analysis, and moreover, only a slight increase in incidence of chromosomal aberrations was observed at a concentration of 5 X 10(-6) M CdCl2. In contrast, a marked and concentration-dependent increase in incidence of chromosomal aberrations was observed after post-treatment culture for 22 h follows 2-h treatment with 1 X 10(-6) M to 5 X 10(-5) M of CdCl2 in both MEM + 10% FBS and HEPES-Hanks. Two-h treatment with cadmium in HEPES-Hanks was approximately 3 times more potent for the induction of chromosomal aberrations than that in MEM + 10% FBS. Types of aberrations induced by CdCl2 mainly consisted of chromatid gaps and breaks, although a few exchanges, dicentrics and fragmentations were observed at high concentrations of cadmium. Increase in incidence of tetraploidy was also observed with a concentration dependency after 2-h treatment with CdCl2. Potency of CdCl2 to induce chromosomal aberrations after 2-h exposure was comparable to that of benzo[a]pyrene activated with S9 at equitoxic concentrations. Two-h treatment with cadmium markedly inhibited incorporation of [3H]thymidine, even at concentrations at which incorporation of [3H]uridine or [3H]leucine was less inhibited. However, the inhibition of [3H]thymidine incorporation by cadmium was reversible and the incorporation restored to the control level during 2-6 h of post-treatment incubation. These findings suggest that restoration of DNA synthesis after cadmium exposure is required for the efficient detection of chromosomal aberrations induced by the metal.  相似文献   

6.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

7.
K Asami 《Radiation research》1987,109(2):216-226
A rat was irradiated to the upper abdomen including the liver and then partially hepatectomized. The subsequent synthesis and phosphorylation of histone H1 and nonhistone chromosomal high mobility group (HMG) proteins were investigated. Incorporation of [3H]lysine into histone H1 was increased and reached its peak at 27 h after hepatectomy, and 14 Gy of X rays inhibited the increase. Increase in the incorporation of [3H]lysine into HMG (1 + 2), 14, and 17 which occurred around 27 h after hepatectomy was not inhibited by 14 Gy irradiation. Phosphorylation of histone H1, measured with 32Pi incorporation in vivo, was maximal between 21 and 24 h, and it was inhibited by 4.8 Gy of X rays and delayed with 1.9 Gy. Phosphorylation of HMG 14, which was the only HMG protein phosphorylated under present conditions, was not affected by X irradiation. The [3H]thymidine incorporation into nuclear DNA started increasing at 21 h and reached its maximum at 27 h after hepatectomy. X irradiation with 4.8 Gy inhibited the incorporation, and 1.9 Gy lowered it.  相似文献   

8.
Unscheduled DNA synthesis (UDS) was studied in confluent rat pleural mesothelial cells (RPMCs) arrested in G0/G1 with hydroxyurea (HU) and treated with various fibre types, i.e., chrysotile, crocidolite or attapulgite. In addition, the effects of UV light and of benzo[a]pyrene were determined as references. Using autoradiography after [3H]thymidine incorporation ([3H]dThd), RPMCs treated with 4 micrograms/cm2 of chrysotile fibres exhibited a low but significant enhancement of net grains compared to untreated cells. Treatment with higher doses of chrysotile was not possible because of the impairment of microscopic observation due to the presence of the fibres. Using liquid scintillation counting, RPMCs treated with chrysotile or crocidolite showed a significant dose-dependent increase in [3H]dThd incorporation compared to untreated cells. In contrast, attapulgite did not enhance [3H]dThd incorporation compared to untreated cells. Treatment of RPMCs with 1, 2 or 4 micrograms/ml of benzo[a]pyrene resulted in a significant increase in [3H]dThd incorporation. In order to discount a possible role of S cells in the augmentation of [3H]dThd incorporation, despite the presence of 5 mM HU, S cells were counted by autoradiography. Results indicated that the percentage of S cells was similar in asbestos-treated and untreated cultures. Stimulation of the S phase also seems unlikely because treatment of RPMCs with asbestos fibres in the absence of HU resulted in a reduction of [3H]dThd incorporation attributed to an impairment of the S phase by the fibres. 1-4 micrograms/ml benzo[a]pyrene or 10-50 J/m2 UV light resulted in an approximate doubling of [3H]dThd incorporation. The effects of inhibitors of DNA repair were determined in chrysotile-treated RPMCs. [3H]dThd incorporation was inhibited by cytosine arabinoside and nalidixic acid. These results show that asbestos produces UDS in RPMCs.  相似文献   

9.
Nicotinamide-adenine dinucleotide (NAD+) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD+ levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase ( ADPRT ) also increased linearly with radiation dose. The decrease of NAD+ was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79- AL162 /S-10. An inhibitor of ADPRT , m-aminobenzamide, largely prevented the depletion of cellular NAD+ and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D2O--which inhibit repair of radiation-induced potentially lethal damage--enhanced the depletion of NAD+ and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD+ metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage.  相似文献   

10.
《Mutation Research Letters》1993,301(3):177-182
Topoisomerase II inhibitors such as etoposide (VP16) are able to stabilize the enzyme—DNA complex by trapping the topoisomerase on DNA without affecting its strand-break activity. To test if this inhibition resulting in chromosomal breakage via double-strand breaks could underlie gene amplification, we performed VP16 treatments followed by selection for PALA resistance in V79/B7 Chinese hamster cells. We found that VP16 induced PALA-resistant cells very efficiently, and in a dose-dependent manner. On the other hand VP16 in combination with 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase involved in DNA repair, reduced the frequency of PALA-resistant cells. Cytogenetic analysis revealed a higher number of chromosomal aberrations in VP16-treated cells than in cells treated with VP16 plus 3AB. These results suggest a correlation between frequency of chromosomal aberrations and frequency of PALA-resistant cells, and are consistent with models which consider chromosomal breakage as an important step in initiating gene amplification.  相似文献   

11.
Takaji Ikushima   《Mutation research》1987,180(2):215-221
When Chinese hamster V79 cells were internally exposed to low level chronic β-rays from incorporated tritiated thymidine (3H-dThd), the showed an “adaptive” response to the induction of chromosomal damage by subsequent higher acute doses of γ-rays.

The yield of sister-chromatid exchanges (SCEs) in the 3H-dThd pretreated cells was less than the yield induced by γ-rays alone (protective effects), and the micronucleus frequency was less than the sum of the induced frequencies by 3H-dThd and γ-rays separately (below-additivity effects). No adaptation to the micronucleus induction by γ-rays was observed after the 3H-adapted cells had divided once and when 3-aminobenzamide (3AB) was given before the challenge doses. The cross-resistance study revealed that the 3H-adapted cells were resistant to SCE induction but not to the micronucleus inductions by the challenge doses of reactor radiations. The results suggest that the SCE adaptation and the micronucleus adaptation or clastogenic adaptation are probably caused by different, inducible adaptive repair pathways.  相似文献   


12.
NAD is the substrate of a novel chromatin-associated enzyme-ADP-ribosyl transferase (ADPRT). In this study, the cell-cycle dependent change in cellular NAD content was observed in a line of human amnion FL cells. It was found that the cellular NAD content of FL cells was highest in G1 and lowest in S/G2-G2. 3AB, a potent ADPRT inhibitor, can inhibit the cell cycle dependent change in cellular NAD content and also inhibit DNA synthesis in the S phase and extend the S phase. The results indicate that ADP-ribosylation may be involved in DNA replication and cell cycle progression. It was also found that the DNA-damaging agents, MNNG, MMS and 4NQO could lower cellular NAD content in a dose-dependent way. This DNA-damage-induced NAD lowering could be partially or completely prevented by the ADPRT inhibitors, 3AB or nicotinamide, which were shown to exert no influence on either the cellular NAD content of normal quiescent FL cells or the metabolic blocking agent, 2,4-DNP-induced cellular NAD lowering. The possibility of establishing a simple and specific method to detect DNA-damaging agents by measuring cellular NAD content in the presence or absence of ADPRT inhibitor is explored.  相似文献   

13.
本文观察了FL细胞中ADP-核糖基转移酶(ADPRT)底物NAD含量的细胞周期性变化及其与DNA复制之间的关系。FL细胞NAD含最在G_1期最高,而在S期DNA合成高峰后0—3小时(S/G_2期)达到最低点。ADPRT抑制剂3 AB能够抑制NAD含量的细胞周期性变化,而且S期DNA合成亦受到抑制,并呈现S期延长,提示ADP-核糖基化作用可能参与DNA复制过程。本文还观察了三种DNA损伤剂MNNG、MMS及4NQO对处于细胞周期不同时相的FL细胞NAD含量的影响,以及ADPRT抑制剂3 AB及尼克酰胺对此影响的作用。证明ADPRT抑制剂可以特异地抑制DNA损伤性NAD含量下降而对正常FL细胞NAD含量及代谢抑制剂2,4-DNP所致的NAD含量下降没有影响。从而有可能建立一个以测量细胞内NAD含量为指标的简便、快速、特异的检测DNA损伤因子的方法。  相似文献   

14.
Repair replication in response to ultraviolet irradiation has been studied in normal human diploid fibroblast cultures, W138, and an SV40 transformant, VA13. Quantitative comparisons have been made using the combined isotopic and density labeling method for assaying repair replication. We find no significant difference in the amount of repair replication performed its dose response, or the time course between growing and confluent W138 cells, early passage and senescent cells, or normal W138 cells and the transformed VA13 cells. When [3H]dThd was employed as the isotopic label in the presence of a 30-200 fold excess of unlabelled BrdUrd, apparent differences in repair replication were seen between W138 cells shortly after subcultivation and cells which had been allowed to reach confluence. These differences were the same over a wide dose range and regardless of the passage number of the cells, but could be influenced by using different serum lots. The differences were not seen, however, when [3H]BrdUrd provided the isotopic label; thus they reflect either impurities in the [3H]dThd or a slight discrimination by some cellular process.  相似文献   

15.
Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 microM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 +/- 1.05 ng/10(5) cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodified enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.  相似文献   

16.
Incorporation of BrdUrd into nuclear DNA sensitizes CHO cells (1) to the induction of chromosomal aberrations by X-rays and 0.5 MeV neutrons and (2) to induction of chromosomal aberrations and SCEs by lw-UV. We have attempted to establish a correlation between induced chromosomal alterations and induced single- or double-strand breaks in DNA. The data show that while DSBs correlate very well with X-ray-induced aberrations, no clear correlation could be established between lw-UV induced SSBs (including alkali-labile sites) and chromosomal alterations.

In addition the effect of 3-aminobenzamide (3AB) on the induction of chromosomal aberrations and SCEs induced by lw-UV has been determined. It is shown that 3AB is without any effect when lw-UV-irradiated cells are posttreated with this inhibitor.

The significance of these results is discussed.  相似文献   


17.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

18.
Exposure of Chinese hamster cells to near-u.v. light, following the uniform incorporation of 5-bromodeoxyuridine (BrdUrd) into their DNA, resulted in cell killing that was close to exponential. An inhibitor of poly(ADP-ribose) synthesis, 3-aminobenzamide (3-ABA), enhanced the cytotoxic effect of this treatment when present for 2 h at 20 mM after light exposure. The dose modifying factor was 1.4. Under conditions that resulted in a sigmoidal survival curve (a 30 min BrdUrd pulse in S phase, followed 90 min later by light exposure) the effect of 3-ABA was to remove the shoulder of the survival curve with very little change in its final slope. Using various inhibitors of ADP-ribosyl transferase (ADPRT) the enhanced cell killing was found to correlate with the inhibitors' relative potency. Cellular NAD+, the substrate for poly(ADP-ribose) synthesis, was rapidly depleted after exposure. This depletion was largely prevented by 3-ABA; the activity of ADPRT increased with the fluence of near-u.v. light; and the concentration of cellular NAD+ decreased with exposure. ADPRT activity was maximal immediately after exposure to near u.v. light and then decayed to pre-exposure levels within 30 min (37 degrees C). The enhanced cytotoxicity of BrdUrd + near-u.v. light, when followed by 3-ABA treatment, disappeared at a rate similar to that of the decay in ADPRT activity. We conclude from these results that poly(ADP-ribose) synthesis is important for the recovery from BrdUrd photolysis damage in DNA. Because this damage and its repair are relatively specific (e.g. compared to ionizing radiation) and relatively easy to manipulate, it could serve as a model system for the study of the role of poly(ADP-ribose) in the repair of DNA damage.  相似文献   

19.
The effect of 3-aminobenzamide (3AB) treatment on chromosomal radiosensitivity of mouse spermatogonial stem cells and bone-marrow cells was studied using various doses of X-rays. The results show that 3AB increases the induction of reciprocal translocations in slowly cycling spermatogonia as well as the frequency of chromosomal aberrations in actively dividing bone-marrow cells. The experiments indicate that both types of tissue are suitable to study the ability of inhibitors of ADP-ribosylation to modulate chromosome-breaking damage induced by ionizing radiation in vivo.  相似文献   

20.
The induction of cytotoxicity, chromosomal aberrations, and sister chromatid exchanges (SCEs) was measured in CHO K-1c cells and in isogenic X-ray-sensitive mutant xrs-6c cells that had been irradiated with X rays and alpha particles in isoleucine-deficient alpha-minimal essential medium in G1 phase of the cell cycle. There was a noticeable shoulder region on the survival curve for CHO K-1c cells irradiated with very low doses of alpha particles, whereas this feature was absent for xrs-6c cells with alpha-particle doses as low as 0.5 cGy. Higher frequencies of chromatid-type aberrations were induced in G1-phase xrs-6c cells than in G1-phase CHO K-1c cells by both gamma- and alpha-particle irradiation. Induction of nonlethal chromosomal aberrations was observed following exposure to 2-6 cGy of alpha particles, doses yielding 97-100% cell survival. Irradiation with 0.5 cGy of alpha particles induced SCE; nearly 60% of irradiated cells contained significantly increased levels of SCE. However, only 3% of the nuclei of cells exposed to 0.5 cGy of alpha-particle radiation were actually traversed by an alpha particle. The observation that a large fraction of cells apparently survive exposure to very low doses of alpha-particle radiation with persistent genetic damage manifested by both chromosomal aberrations and SCEs may have important implications for the carcinogenic hazards of high-LET radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号