首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toye P. G. and Jenkin C. R. 1982. Protection against Mesocestoides corti infection in mice treated with zymosan or Salmonella enteritidis 11RX. International Journal for Parasitology12: 399–402. Zymosan and Salmonella enteritidis 11RX were found to partially protect mice against infection with the cestode Mesocestoides corti. Thus, mice previously infected with S. enteritidis 11RX contained fewer parasites in the peritoneal cavity compared to normal mice. Mice pretreated with zymosan contained fewer parasites in the peritoneal cavity and in the liver compared to normal mice and this protection was enhanced by the passive transfer of serum from mice chronically infected with M. corti. Examination of mice in the initial stages of infection revealed that the administration of zymosan led to an alteration in parasite location from the peritoneal cavity to the liver.  相似文献   

2.
3.
The bactericidal activity of mouse macrophages with different sensitivity to Salmonella infection has been studied. The sensitivity of BALB/c mice to S. typhimurium infection is associated with the low bactericidal activity of their macrophages. The introduction of interferon stimulates the bactericidal activity of macrophages sensitive to Salmonella infection of mice, which sharply enhances the resistance of the animals to this infection.  相似文献   

4.
Cellular immunity to Mycobacterium tuberculosis (Mtb) requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-γ is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT) cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as α-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo.  相似文献   

5.
Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the ‘inflammasome’, and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1−/− mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1−/− mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1−/− mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.  相似文献   

6.
In normal mice, the total count of peritoneal leukocytes was markedly decreased after intraperitoneal (i.p.) injection of the capsular polysaccharide of Klebsiella pneumoniae (CPS-K) depending on the dosage injected. This decrease was mainly due to the depletion of macrophages, and a decrease in the number of lymphocytes occurred to a lesser extent. CPS-K in relatively smaller doses mobilized polymorphonuclear neutrophilic leukocytes (PMN) into the peritoneal fluid but it decreased them transiently in larger doses. In mice infected i.p. with a virulent strain of Salmonella enteritidis, there was an abundant emigration of PMN into the peritoneal fluid. When 200 μg of CPS-K was injected i.p. immediately before bacterial challenge, emigration of PMN was markedly delayed for 48 hr after infection. Associated with this suppressed emigration of PMN, the numbers of macrophages and lymphocytes in the peritoneal fluid were significantly less in mice treated with CPS-K than those in untreated control mice for 48 hr after infection. The numbers of both cell-associated and extracellular bacteria in the peritoneal fluid were markedly greater in mice treated with CPS-K than those in untreated control mice. In both in vivo and in vitro experiments, ingestion of bacteria by macrophages and PMN was not blocked by CPS-K or neutral CPS-K, the active substance responsible for the infection-promoting effect of CPS-K. It appeared that CPS-K somehow impaired the intraphagocytic bactericidal activity.  相似文献   

7.
The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection.  相似文献   

8.
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T lymphocytes compared to mice infected with ΔsseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria.  相似文献   

9.
Although numerous studies have demonstrated the ability of intestinal epithelial cells to produce PGs after infection with wild-type strains of Salmonella, few studies have focused on Salmonella-induced prostanoids in mucosal lymphoid tissues. This is surprising in view of the profound effects PGs can have on the host response. To begin to address PG production at mucosal sites, mice were orally inoculated with Salmonella, and at varying times postinfection cyclooxygenase-2 (COX-2) mRNA expression and PGE(2) synthesis were investigated. COX-2 mRNA expression was highly inducible in the mesenteric lymph nodes, whereas COX-1 mRNA levels were constitutive. PGE(2) production also increased significantly in the mesenteric lymph nodes following exposure to viable Salmonella, but not after exposure to killed bacteria. This increased PGE(2) response could be blocked by treatment of mice with the selective COX-2 inhibitor, celecoxib. Treatment of mice with celecoxib during salmonellosis resulted in increased viable bacteria in the mesenteric lymph nodes by day 3 postinfection. However, celecoxib treatment prolonged the survival of lethally infected animals. In vitro studies demonstrated Salmonella-induced up-regulation of COX-2 mRNA expression and PGE(2) secretion by both macrophages and dendritic cells, which could also be blocked in the presence of celecoxib. Interestingly, exposure of these cultured APCs to viable Salmonella was a much greater stimulus for induction of PGE(2) synthesis than exposure to Salmonella-derived LPS. The present study demonstrates induction of PGE(2) synthesis in mesenteric lymph nodes, macrophages, and dendritic cells after infection with wild-type salmonella.  相似文献   

10.
The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.  相似文献   

11.
12.
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified role for this prostaglandin.  相似文献   

13.
The engulfing, bactericidal and degrading activities toSalmonella typhi, strain ty2-4446 and 0-901 and toSalmonella enteritidis of guinea pig macrophages obtained from peritoneal exudate, spleen and bone marrow that were cultivated for 2–7 days, were studied. The phagocytic activity was expressed as a total number of phagocytosed microbes and the number of viable bacteria, released from mechanically disrupted macrophages. The ratio of phagocytosed bacteria to the original number of bacteria that were introduced to macrophage cultures, were evaluated in per cents. No significant difference in phagocytic activity was found between macrophages submitted to thein vitro cultivation and macrophages freshly isolated from the organism. Profound variations in phagocytic activity of cells were found which were partially dependent on the dose of microbes employed for the infection of cultures. Furthermore, both the engulfing and bactericidal activity of peritoneal macrophages toSalmonella typhi were found to be higher than in bone morrow macrophages.Salmonella typhi 0-901 microbes were phagocytosed by macrophages from bone marrow and peritoneal exudate much better thanSalmonella typhi ty2. In addition, a significant delay in bactericidal activity toSalmonella typhi ty2 of bone marrow macrophages in comparison to peritoneal macrophages was observed. The spleen macrophages possessed better phagocytic and killing activity toSalmonella enteritidis than bone marrow macrophages. A striking difference was found as regards the intracellular growth ofSalmonella typhi andSalmonella gertneri: no multiplication ofSalmonella typhi within the peritoneal and bone marrow macrophages was observed during the 3–5 h cultivation, whereas on the other hand,Salmonella gertneri started to grow intracellularly within the 5 h cultivation in the bone marrow macrophages.  相似文献   

14.
Macrophages treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent inflammatory and tumor-promoting agent, can have the diametrically opposed functions of contact-mediated tumor cytotoxicity and release of soluble clonal proliferation factor(s) for tumor cells. In vitro TPA treatment of macrophages at 1.0 ng/ml induced prostaglandin E2 release and morphological changes analogous to cell activation. In addition, conditioned medium from macrophages pulsed with TPA enhanced M109 carcinoma colony formation in vitro. Although macrophages were not rendered tumoricidal by TPA in vitro, cytotoxic macrophages were recovered from mice following ip treatment with TPA at 1–100 μg/kg. This indicated an indirect pathway for the activation of macrophages by TPA. The very weak tumor promoting 4-O-methyl-12-O-tetradecanoylphorbol-13-acetate lacked effects on macrophages at all doses tested. The possibility that macrophage secretions (e.g., prostaglandin E2, angiogenesis-stimulating factor(s), and clonal proliferation factor(s) for carcinogen-triggered cells) may be involved in the tumor promotion process is discussed.  相似文献   

15.
Spleen cells of C57BL/6 mice produced high amounts of PGE in vitro when tested 5 to 10 days after injection of heat-killed C. parvum organisms. Little or no PGE was produced by spleen cells from untreated mice or from mice injected with a strain of coryneform bacteria that does not stimulate the lymphoreticular system of mice. Significant release of PGE from spleen cells of C. parvum injected mice could be detected as early as 30 min after initiating the cultures and maximal levels were usually seen after 48 hr. Treatment by indomethacin completely abolished this PGE production. Removal of the adherent population from the spleen cell suspension resulted in markedly decreased levels of PGE, but PGE release of the remaining population was never completely abolished. These data suggest that the cells responsible for most of the PGE synthesis in this system were adherent cells, presumably macrophages. The levels of PGE produced in spleen cells of C. parvum-treated mice were further increased by in vitro addition of C. parvum. This effect could also be observed after addition of zymosan particles indicating that it was not an immunologically specific effect. The reported data suggest that prostaglandins may represent important mediator molecules of the described immunostimulatory and immunosuppressive effects of C. parvum.  相似文献   

16.
Spexin (SPX) is a novel adipokine related to many metabolic effects, such as gastrointestinal movements, insulin and glucose homeostasis, lipid metabolism and energy balance. This study evaluates the role of SPX in the improvement of the metabolic and inflammatory profile in fructose-rich-diet obese mice. Adult Swiss mice were supplemented or not with fructose (20% in tap water, FRD and CTR, respectively) for 10 weeks. The last ten days, mice were treated or not with SPX (ip. 29 μg/Kg/day, FRD-SPX and CTR-SPX, respectively). A positive correlation was observed between body weight prior to treatment and weight loss after SPX challenge. Moreover, plasma and liver triglycerides and adipose tissue (AT) features (mass, adipocyte hypertrophy, mRNA of leptin) were improved. SPX also induced a reduction in epididymal AT (EAT) expression of TNFα, IL1β and IL6 and an improvement in IL10 and CD206. M1 macrophages in EAT, principally the Ly6C populations (M1a and M1b), were decreased. Adipocytes from FRD-SPX mice induced less macrophage activation (IL6, mRNA and secretion) than FRD after overnight co-culture with the monocyte cell line (RAW264.7) in stimulated conditions (M1 activation, LPS 100 ng/mL). Finally, in vitro, monocytes pre-incubated with SPX and stimulated with LPS showed decreased inflammatory mRNA markers compared to monocytes with LPS alone. In conclusion, SPX decreased body weight and improved the metabolic profile and adipocyte hypertrophy. Inflammatory Ly6C macrophages decreased, together with inflammatory marker expression. In vitro studies demonstrate that SPX induced a decrease in M1 macrophage polarization directly or through mature adipocytes.  相似文献   

17.

Background

Burkholderia pseudomallei infection (melioidosis) is an important cause of community-acquired Gram-negative sepsis in Northeast Thailand, where it is associated with a ∼40% mortality rate despite antimicrobial chemotherapy. We showed in a previous cohort study that patients taking glyburide ( = glibenclamide) prior to admission have lower mortality and attenuated inflammatory responses compared to patients not taking glyburide. We sought to define the mechanism underlying this observation in a murine model of melioidosis.

Methods

Mice (C57BL/6) with streptozocin-induced diabetes were inoculated with ∼6×102 cfu B. pseudomallei intranasally, then treated with therapeutic ceftazidime (600 mg/kg intraperitoneally twice daily starting 24 h after inoculation) in order to mimic the clinical scenario. Glyburide (50 mg/kg) or vehicle was started 7 d before inoculation and continued until sacrifice. The minimum inhibitory concentration of glyburide for B. pseudomallei was determined by broth microdilution. We also examined the effect of glyburide on interleukin (IL) 1β by bone-marrow-derived macrophages (BMDM).

Results

Diabetic mice had increased susceptibility to melioidosis, with increased bacterial dissemination but no effect was seen of diabetes on inflammation compared to non-diabetic controls. Glyburide treatment did not affect glucose levels but was associated with reduced pulmonary cellular influx, reduced bacterial dissemination to both liver and spleen and reduced IL1β production when compared to untreated controls. Other cytokines were not different in glyburide-treated animals. There was no direct effect of glyburide on B. pseudomallei growth in vitro or in vivo. Glyburide directly reduced the secretion of IL1β by BMDMs in a dose-dependent fashion.

Conclusions

Diabetes increases the susceptibility to melioidosis. We further show, for the first time in any model of sepsis, that glyburide acts as an anti-inflammatory agent by reducing IL1β secretion accompanied by diminished cellular influx and reduced bacterial dissemination to distant organs. We found no evidence for a direct effect of glyburide on the bacterium.  相似文献   

18.
Group B Streptococcus (GBS) is a common agent of bacterial sepsis and meningitis in newborns. The GBS surface capsule contains sialic acids (Sia) that engage Sia-binding immunoglobulin-like lectins (Siglecs) on leukocytes. Here we use mice lacking Siglec-E, an inhibitory Siglec of myelomonocytic cells, to study the significance of GBS Siglec engagement during in vivo infection. We found GBS bound to Siglec-E in a Sia-specific fashion to blunt NF-κB and MAPK activation. As a consequence, Siglec-E-deficient macrophages had enhanced pro-inflammatory cytokine secretion, phagocytosis and bactericidal activity against the pathogen. Following pulmonary or low-dose intravenous GBS challenge, Siglec-E KO mice produced more pro-inflammatory cytokines and exhibited reduced GBS invasion of the central nervous system. In contrast, upon high dose lethal challenges, cytokine storm in Siglec-E KO mice was associated with accelerated mortality. We conclude that GBS Sia mimicry influences host innate immune and inflammatory responses in vivo through engagement of an inhibitory Siglec, with the ultimate outcome of the host response varying depending upon the site, stage and magnitude of infection.  相似文献   

19.
To determine whether macrophages can discriminate in an immunologically specific manner between the intracellular pathogens which they inhibit or kill, unelicited peritoneal macrophages from mice infected with either of two related but antigenically dissimilar protozoa were challenged with these protozoa in vitro. Experimental conditions were varied in an attempt to establish a state in vivo in which macrophage specificity might be demonstrated. No differences could be discerned between the ability of macrophages from three different strains of mice infected with the protozoa to kill Besnoitia and Toxoplasma. The effect of macrophages on Toxoplasma as compared with Besnoitia did not evolve or vary during development, expression, or decline of an immune response, i.e., with varying times after infection of mice as well as with varying times after treatment of mice with irradiated Toxoplasma. The route of infection could not be shown to confer specificity on macrophages, as subcutaneous and intraperitoneal inoculation of Toxoplasma did not lead to differential ability of macrophages to inhibit or kill the protozoa. The different strains of protozoa used for infection of mice did not affect the ability of peritoneal macrophages from Besnoitia- and Toxoplasma-infected mice to inhibit multiplication of or kill Besnoitia and Toxoplasma comparably in vitro. Peritoneal macrophages of mice treated with Corynebacterium parvum kill both organisms efficiently. These macrophages were employed to determine whether stimulation of macrophages by treatment of mice with a substance unrelated to the protozoa would produce activated macrophages. Uninfected mice and mice infected with either Besnoitia or Toxoplasma were challenged with varying doses of the protozoa in parallel with examination of macrophages from the same groups of mice in vitro to determine whether the presence of stimulated macrophages in the peritoneal cavity was necessary for protection against Toxoplasma and Besnoitia, and if so if their presence was sufficient for protection. Only mice with activated peritoneal macrophages were protected. However, protection was greater when the primary infection was with the same organisms used for challenge at a time when macrophages inhibited or killed both protozoa efficiently in vitro. The possible role of other effector cells, subpopulations of macrophages of different functional abilities in various sites, and antibody or other lymphocyte products acting in concert with macrophages as factors which may explain the differences observed between in vivo protection and in vitro capacity to inhibit or kill the protozoa are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号