首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in DMT1 (Nramp2 and Slc11a2) impair iron metabolism and cause microcytic anemia. DMT1 is expressed at the duodenal brush border where it controls uptake of dietary iron and is present at the plasma membrane and in recycling endosomes of most cells, where it is necessary for acquisition of transferrin-associated iron. The goal of this study was to identify signal(s) in the cytoplasmic segments of DMT1 responsible for its subcellular targeting and internalization from the plasma membrane into recycling endosomes. We introduced mutations in the amino terminus (DeltaNT), carboxyl terminus (DeltaCT), as well as in NPAY28-31, YSCF62-65, and YLLNT555-559 motifs of a DMT1 construct bearing an exofacial epitope tag, which allowed labeling of the transporter at the cell surface for kinetic studies. Mutants were stably expressed in LLC-PK1 kidney cells and were studied for transport activity, subcellular localization, cell-surface and recycling pool distribution, and internalization from the plasma membrane. Kinetic studies showed that carboxyl-terminus mutants (DeltaCT and DeltaYLLNT) had an increased fraction of the "recycling pool" that was expressed at the cell surface because of impaired internalization from the plasma membrane. Further cell-surface-labeling and immunofluorescence studies in intact cells showed that the DeltaYLLNT and DeltaCT mutants were targeted to the lysosomal compartment upon internalization. These results suggest that the major signal for internalization and recycling of DMT1 isoform II (-IRE/1B) resides in its carboxyl terminus and that removal of this signal leads to a default lysosomal targeting.  相似文献   

2.
In macrophages, Nramp1 (Slc11a1) is expressed in lysosomes and restricts replication of intracellular pathogens by removing divalent metals (Mn2+ and Fe2+) from the phagolysosome. Nramp2 (DMT1, Slc11a2) is expressed both at the duodenal brush border where it mediates uptake of dietary iron and ubiquitously at the plasma membrane/recycling endosomes of many cell types where it transports transferrin-associated iron across the endosomal membrane. In Nramp2, a carboxyl-terminal cytoplasmic motif ((555)YLLNT(559)) is critical for internalization and recycling of the transporter from the plasma membrane. Here we studied the subcellular trafficking properties of Nramp1 and investigated the cis-acting sequences responsible for targeting to lysosomes. For this, we constructed and studied Nramp1/Nramp2 chimeric proteins where homologous domains of each protein were exchanged. Chimeras exchanging the amino-(upstream TM1) and carboxyl-terminal (downstream TM12) cytoplasmic segments of both transporters were stably expressed in porcine LLC-PK1 kidney cells and were studied with respect to expression, maturation, stability, cell surface targeting, transport activity, and subcellular localization. An Nramp2 isoform II chimera bearing the amino terminus of Nramp1 was not expressed at the cell surface but was targeted to lysosomes. This lysosomal targeting was abolished by single alanine substitutions at Tyr15 and Ile18 of a (15)YGSI(18) motif present in the amino terminus of Nramp1. These results identify YGSI as a tyrosine-based sorting signal responsible for lysosomal targeting of Nramp1.  相似文献   

3.
NRAMP2 (natural resistance-associated macrophage protein 2)/DMT1 (divalent metal transporter 1) is a divalent metal transporter conserved from prokaryotes to higher eukaryotes that exhibits an unusually broad substrate range, including Fe(2+), Zn(2+), Mn(2+), Cu(2+), Cd(2+), Co(2+), Ni(2+), and Pb(2+), and mediates active proton-coupled transport. Recently, it has been shown that the microcytic anemia (mk) mouse and the Belgrade (b) rat, which have inherited defects in iron transport that result in iron deficiency anemia, have the same missense mutation (G185R) in Nramp2. These findings strongly suggested that NRAMP2 is the apical membrane iron transporter in intestinal epithelial cells and the endosomal iron transporter in transferrin cycle endosomes of other cells. To investigate the cellular functions of NRAMP2, we generated a polyclonal antibody against the N-terminal cytoplasmic domain of human NRAMP2. The affinity-purified anti-NRAMP2 N-terminal antibody recognized a 90-116-kDa membrane-associated protein, and this band was shifted to 50 kDa by deglycosylation with peptide N-glycosidase F. Subcellular fractionation revealed that NRAMP2 co-sedimented with the late endosomal and lysosomal membrane proteins and LAMP-1 (lysosome-associated membrane protein 1), but not with the transferrin receptor in early endosomes. The intracellular localization of endogenous NRAMP2 and recombinant green fluorescent protein (GFP)-NRAMP2 was examined by immunofluorescence staining and by native fluorescence of GFP, respectively. Both endogenous and GFP-NRAMP2 were detected in vesicular structures and were colocalized with LAMP-2, but not with EEA1 (early endosome antigen 1) or the transferrin receptor. These results indicated that NRAMP2 is localized to the late endosomes and lysosomes, where NRAMP2 may function to transfer the endosomal free Fe(2+) into the cytoplasm in the transferrin cycle.  相似文献   

4.
5.
Annexin 2 is a Ca2+- and phospholipid-binding protein previously identified on endosomal membranes and the plasma membrane. Inferred from this location and its stimulatory effect on membrane transport annexin 2 has been proposed to play a role in the structural organization and dynamics of endosomal membranes. Validation of this view requires a detailed analysis of the distribution of annexin 2 over the endosomal compartment and a characterization of the parameters governing this distribution. Towards this end we have devised an immunoisolation protocol to purify annexin 2-positive membrane vesicles from subcellular fractions of BHK cells containing early endosomes. We show that this approach leads to the isolation of intact endosomal vesicles containing internalized fluid-phase marker and that the immunoisolated membranes are positive for the transferrin receptor and Rab4 but not for the early endosomal antigen EEA1. A distinct and non-uniform distribution of annexin 2 over the early endosomal compartment is also observed in immunoelectron microscopy analyses of whole-mount specimens of BHK cells. Annexin 2 antibodies labeled transferrin receptor-containing tubular early endosomal structures, but not EEAl-positive endosomal vacuoles. We also observed that the Ca2+-independent association of annexin 2 with endosomal membranes was disrupted by the cholesterol-binding glycerid saponin, while Ca2+ could trigger annexin 2 binding to saponin-treated endosomal membranes. Thus, either Ca2+- or cholesterol-stabilized membrane domains are required for the binding of annexin 2 to endosomes suggesting that both factors may regulate this interaction.  相似文献   

6.
7.
We have used defined subcellular fractions to reconstitute in a cell-free system vesicle fusions occurring in the endocytic pathway. The endosomal fractions were prepared by immuno-isolation using as antigen an epitope located on a foreign protein, the transmembrane glycoprotein G (G-protein) of vesicular stomatitis virus. The G-protein was first implanted in the cell plasma membrane and subsequently endocytosed for 15 to 30 min at 37 degrees C. The endosomal fractions were immuno-isolated on a solid support using as antigen the cytoplasmic domain of the G-protein in combination with a specific monoclonal antibody. For comparative studies the plasma membrane was immuno-isolated from cells in the absence of G internalization with a monoclonal antibody against the exoplasmic domain of the G-protein. The immuno-isolated endosomal vesicles contained 70% of horseradish peroxidase internalized in the endosome fluid phase, exhibited an acidic luminal pH as shown by acridine orange fluorescence and differed in their protein composition from the immuno-isolated plasma membrane fraction. The fusion of endocytic vesicles originating from different stages of the pathway was studied in a cell-free assay using both a bio-chemical and a morphological detection system. These well defined endosomal vesicles were immuno-isolated with the G-protein on the solid support and provided the recipient compartment of the fusion (acceptor). They were mixed with a post-nuclear supernatant containing endosomes loaded with exogenous lactoperoxidase (donor) at 37 degrees C. Fusion delivered the donor peroxidase to the lumen of acceptor vesicles permitting fusion-specific iodination of the G-protein itself. The fusion of vesicles required ATP and was detected only with an endosomal fraction prepared after internalization of the G-protein for 15 min at 37 degrees C but not with a plasma membrane or with an endosomal fraction prepared after 30 min G-protein internalization.  相似文献   

8.
Johnson DM  Yamaji S  Tennant J  Srai SK  Sharp PA 《FEBS letters》2005,579(9):1923-1929
A number of regulatory factors including dietary iron levels can dramatically alter the expression of the intestinal iron transporter DMT1. Here we show that Caco-2 cells exposed to iron for 4h exhibited a significant decrease in plasma membrane DMT1 protein, though total cellular DMT1 levels were unaltered. Following biotinylation of cell surface proteins, there was a significant increase in intracellular biotin-labelled DMT1 in iron-exposed cells. Furthermore, iron-treatment increased levels of DMT1 co-localised with LAMP1, suggesting that the initial response of intestinal epithelial cells to iron involves internalisation and targeting of DMT1 transporter protein towards a late endosomal/lysosomal compartment.  相似文献   

9.
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism.  相似文献   

10.
In murine L cells, treatment with calpeptin or calpain inhibitor III increased Abeta42, but not Abeta40, secretion in a dose-dependent fashion. This correlated with an increase in the levels of amyloid precursor protein (APP) carboxyl-terminal fragments (CTFs). Immunoprecipitation with novel mAbs directed against the carboxyl-terminus of APP or specific for the beta-cleaved CTF showed that generation of both alpha- and beta-cleaved CTFs increase proportionately following inhibition of calpains. Pulse-chase metabolic labeling confirmed that inhibiting calpains increases the production of alpha- and beta-cleaved APP metabolites. Immunolabeling showed greater betaCTF signal in calpeptin-treated cells, primarily in small vesicular compartments that were shown to be predominantly endosomal by colocalization with early endosomal antigen 1. A second mAb, which recognizes an extracellular/luminal epitope found on both APP and betaCTFs, gave more cell surface labeling of calpeptin-treated cells than control cells. Quantitative binding of this antibody confirmed that inhibiting calpains caused a partial redistribution of APP to the cell surface. These results demonstrate that 1) calpain inhibition results in a partial redistribution of APP to the cell surface, 2) this redistribution leads to an increase in both alpha- and beta-cleavage without changing the ratio of alphaCTFs/betaCTFs, and 3) the bulk of the betaCTFs in the cell are within early endosomes, confirming the importance of this compartment in APP processing.  相似文献   

11.
Epidermal growth factor (EGF) receptor (EGFR) signal transduction is organized by scaffold and adaptor proteins, which have specific subcellular distribution. On a way from the plasma membrane to the lysosome EGFRs are still in their active state and can signal from distinct subcellular locations. To identify organelle-specific targets of EGF receptor signaling on endosomes a combination of subcellular fractionation, two-dimensional DIGE, fluorescence labeling of phosphoproteins, and MALDI-TOF/TOF mass spectrometry was applied. All together 23 EGF-regulated (phospho)proteins were identified as being differentially associated with endosomal fractions by functional organelle proteomics; among them were proteins known to be involved in endosomal trafficking and cytoskeleton rearrangement (Alix, myosin-9, myosin regulatory light chain, Trap1, moesin, cytokeratin 8, septins 2 and 11, and CapZbeta). Interestingly R-Ras, a small GTPase of the Ras family that regulates cell survival and integrin activity, was associated with endosomes in a ligand-dependent manner. EGF-dependent association of R-Ras with late endosomes was confirmed by confocal laser scanning immunofluorescence microscopy and Western blotting of endosomal fractions. EGFR tyrosine kinase inhibitor gefitinib was used to confirm EGF-dependent regulation of all identified proteins. EGF-dependent association of signaling molecules, such as R-Ras, with late endosomes suggests signaling specification through intracellular organelles.  相似文献   

12.
Several viruses encode ion channels that both modulate the trafficking of envelope glycoprotein(s) and stimulate the release of virions from cells. HIV-1 Vpu enhances virion release and inhibits the endosomal accumulation of the viral structural protein Gag. We investigated whether Vpu affects the subcellular distribution of Env as well as Gag. Env and Vpu colocalized with each other, in part within the trans -Golgi network. In the absence of Vpu, Env accumulated more extensively within clathrin-coated endosomal structures. These structures had several features consistent with an endosomal viral assembly domain: they contained Gag, including proteolytically processed viral matrix protein; the tetraspanins CD63 and CD81; the adaptor protein complex AP-3; and AIP1/ALIX, a cellular cofactor for viral budding. These endosomes labelled incompletely with Env derived from the cell surface, suggesting that some Env reaches this compartment without transiting the plasma membrane. Consistent with this, endosomal accumulation of Env was not blocked by dominant-negative Eps15, an inhibitor of AP-2-mediated endocytosis. Although these data are potentially explained by greater endocytosis of mature virions in the absence of Vpu, they also raise the possibility that Vpu inhibits the transport of Env and Gag to late endosomes, leading to viral assembly at the plasma membrane.  相似文献   

13.
Nramp2, also known as DMT1 and DCT1, is a 12-transmembrane (TM) domain protein responsible for dietary iron uptake in the duodenum and iron acquisition from transferrin in peripheral tissues. Nramp2/DMT1 produces by alternative splicing two isoforms differing at their C terminus (isoforms I and II). The subcellular localization, mechanism of action, and destination of divalent cations transported by the two Nramp2 isoforms are not completely understood. Stable CHO transfectants expressing Nramp2 isoform II modified by addition of a hemaglutinin epitope in the loop defined by the TM7-TM8 interval were generated. Immunofluorescence with permeabilized and intact cells established that Nramp2 isoform II is expressed at the plasma membrane and demonstrated the predicted extracytoplasmic location of the TM7-TM8 loop. Using the fluorescent, metal-sensitive dye calcein, and a combination of membrane-permeant and -impermeant iron chelators, Nramp2 transport was measured and quantitated with respect to kinetic parameters and at steady state. Iron transport at the plasma membrane was time- and pH-dependent, saturable, and proportional to the amount of Nramp2 expression. Iron uptake by Nramp2 at the plasma membrane was into the nonferritin-bound, calcein-accessible so-called "labile iron pool." Ion selectivity experiments show that Nramp2 isoform II can also transport Co(2+) and Cd(2+) but not Mg(2+) into the calcein-accessible pool. Parallel experiments with transfectants expressing the lysosomal Nramp1 homolog do not show any divalent cation transport activity, establishing major functional differences between Nramp1 and Nramp2. Monitoring the effect of Nramp2 on the calcein-sensisitve labile iron pool allows a simple, rapid, and nonisotopic approach to the functional study of this protein.  相似文献   

14.
The mechanism of transport of membrane proteins from the trans-Golgi to the cell surface is still poorly understood. Previous studies suggested that basolateral membrane proteins, such as the transferrin receptor and the asialoglycoprotein receptor H1, take an indirect route to the plasma membrane via an intracellular, most likely endosomal intermediate. To define this compartment we developed a biochemical assay based on the very definition of endosomes. The assay is based on internalizing anti-H1 antibodies via the endocytic cycle of the receptor itself. Internalized antibody formed immune complexes with newly synthesized H1, which had been pulse-labeled with [(35)S]sulfate and chased out of the trans-Golgi for a period of time that was insufficient for H1 to reach the surface. Hence, antibody capture occurred intracellularly. Double-immunofluorescence labeling demonstrated that antibody-containing compartments also contained transferrin and thus corresponded to early and recycling endosomes. The results therefore demonstrate an intracellular intersection of the exocytic and endocytic pathways with implications for basolateral sorting.  相似文献   

15.
The neuronal glycine transporter GLYT2 belongs to the neurotransmitter:sodium:symporter (NSS) family and removes glycine from the synaptic cleft, thereby aiding the termination of the glycinergic signal and achieving the reloading of the presynaptic terminal. The task fulfilled by this transporter is fine tuned by regulating both transport activity and intracellular trafficking. Different stimuli such as neuronal activity or protein kinase C (PKC) activation can control GLYT2 surface levels although the intracellular compartments where GLYT2 resides are largely unknown. Here, by biochemical and immunological techniques in combination with electron and confocal microscopy, we have investigated the subcellular distribution of GLYT2 in rat brainstem tissue, and characterized the vesicles that contain the transporter. GLYT2 is shown to be present in small and larger vesicles that contain the synaptic vesicle protein synaptophysin, the recycling endosome small GTPase Rab11, and in the larger vesicle population, the vesicular inhibitory amino acid transporter VIAAT. Rab5A, the GABA transporter GAT1, synaptotagmin2 and synaptobrevin2 (VAMP2) were not present. Coexpression of a Rab11 dominant negative mutant with recombinant GLYT2 impaired transporter trafficking and glycine transport. Dual immunogold labeling of brainstem synaptosomes showed a very close proximity of GLYT2 and Rab11. Therefore, the intracellular GLYT2 resides in a subset of endosomal membranes and may traffic around several compartments, mainly Rab11-positive endosomes.  相似文献   

16.
Vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct cells is critical to regulate the urine concentration. To better understand the mechanism of subcellular trafficking of AQP2, we examined MDCK cells expressing AQP2 as a model. We first performed double-immunolabeling of AQP2 with endosomal marker proteins, and showed that AQP2 is stored at a Rab11-positive subapical compartment. After the translocation to the plasma membrane, AQP2 was endocytosed to EEA1-positive early endosomes, and then transferred back to the original Rab11-positive compartment. When Rab11 was depleted by RNA interference, retention of AQP2 at the subapical storage compartment was impaired. We next examined the role of cytoskeleton in the AQP2 trafficking and localization. By the treatment with microtubule-disrupting agent such as nocodazole or colcemid, the distribution of AQP2 storage compartment was altered. The disruption of actin filaments with cytochalasin D or latrunculin B induced the accumulation of AQP2 in EEA1-positive early endosomes. Altogether, our data suggest that Rab11 and microtubules maintain the proper distribution of the subapical AQP2 storage compartment, and actin filaments regulate the trafficking of AQP2 from early endosomes to the storage compartment.  相似文献   

17.
Nramp1 regulates macrophage activation in infectious and autoimmune diseases. Nramp2 controls anaemia. Both are divalent cation (Fe(2+), Zn(2+), and Mn(2+)) transporters; Nramp2 a symporter of H(+) and metal ions, Nramp1 a H(+)/divalent cation antiporter. This provides a model for metal ion homeostasis in macrophages. Nramp2, localised to early endosomes, delivers extracellularly acquired divalent cations into the cytosol. Nramp1, localised to late endosomes/lysosomes, delivers divalent cations from the cytosol to phagolysosomes. Here, Fe(2+) generates antimicrobial hydroxyl radicals via the Fenton reaction. Zn(2+) and Mn(2+) may also influence endosomal metalloprotease activity and phagolysosome fusion. The many cellular functions dependent on metal ions as cofactors may explain the multiple pleiotropic effects of Nramp1, and its complex roles in infectious and autoimmune disease.  相似文献   

18.
Iron acquisition within host cells and the pathogenicity of Leishmania   总被引:4,自引:0,他引:4  
Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe2 + and Mn2+ ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania , indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens . Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe2+ transporter that is required for intracellular growth and virulence.  相似文献   

19.
Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.  相似文献   

20.
Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号