首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Under selective pressure from the host immune system, antigenic epitopes of influenza virus hemagglutinin (HA) have continually evolved to escape antibody recognition, termed antigenic drift. We analyzed the genomes of influenza A(H3N2) and A(H1N1)pdm09 virus strains circulating in Thailand between 2010 and 2014 and assessed how well the yearly vaccine strains recommended for the southern hemisphere matched them. We amplified and sequenced the HA gene of 120 A(H3N2) and 81 A(H1N1)pdm09 influenza virus samples obtained from respiratory specimens and calculated the perfect-match vaccine efficacy using the p epitope model, which quantitated the antigenic drift in the dominant epitope of HA. Phylogenetic analysis of the A(H3N2) HA1 genes classified most strains into genetic clades 1, 3A, 3B, and 3C. The A(H3N2) strains from the 2013 and 2014 seasons showed very low to moderate vaccine efficacy and demonstrated antigenic drift from epitopes C and A to epitope B. Meanwhile, most A(H1N1)pdm09 strains from the 2012–2014 seasons belonged to genetic clades 6A, 6B, and 6C and displayed the dominant epitope mutations at epitopes B and E. Finally, the vaccine efficacy for A(H1N1)pdm09 (79.6–93.4%) was generally higher than that of A(H3N2). These findings further confirmed the accelerating antigenic drift of the circulating influenza A(H3N2) in recent years.  相似文献   

3.
2009年3月在美国和墨西哥流感样患者的呼吸道标本中鉴定出新的猪源性甲型H1N1流感病毒。该病毒可人一人传播,已蔓延到172个国家和地区。现就猪源性甲型H1N1流感病毒的鉴定、基因组结构特征做一综述。  相似文献   

4.
Influenza A neuraminidase (NA) is a target for anti-influenza drugs. The function of this enzyme is to cleave a glycosidic linkage of a host cell receptor that links sialic acid (Sia) to galactose (Gal), to allow the virus to leave an infected cell and propagate. The receptor is an oligosaccharide on the host cell surface. There are two types of oligosaccharide receptor; the first, which is found mainly on avian epithelial cell surfaces, links Sia with Gal by an α2,3 glycosidic linkage; in the second, found mainly on human epithelial cell surfaces, linkage is via an α2,6 linkage. Some researchers believe that NAs from different viruses show selectivity for each type of linkage, but there is limited information available to confirm this hypothesis. To see if the linkage type is more specific to any particular NA, a number of NA-receptor complexes of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and a pandemic strain of H1N1 (2009) were constructed using homology modeling and molecular dynamics simulation. The results show that the two types of receptor analogues bound to NAs use different mechanisms. Moreover, it was found that a residue unique to avian virus NA is responsible for the recognition of the Siaα2,3Gal receptor, and a residue unique to human virus NA is responsible for the recognition of Siaα2,6Gal. We believe that this finding could explain how NAs of different virus origins always possess some unique residues.  相似文献   

5.
《Inorganica chimica acta》1988,141(2):281-288
The crystal structures and 95Mo NMR spectra of two complexes formed between 2-α-hydroxybenzyl- benzimidazole (C6H5·CHOH·C7H5N2=HOBB), as its sodium salt, and MoO2Cl2 are reported. [MoO2- (OBB)2]·EtOH (OBB=deprotonated HOBB) crystallizes in space group P21/n, with a=12.8441(7), b=15.917(3), c=13.314(2) Å, β=97.163(8)° and Z =4. The structure was determined from 3096 observed reflections and refined to a final R value of 0.030. The complex is a six coordinate cis-dioxo species, the 95Mo spectrum of which shows a single sharp peak at 56 ppm in dimethylformamide (DMF). The second complex, [Mo2O5(OBB)2]·EtOH·H2O, crystallizes in space group Pbca, with a=22.482(4), b=16.442(3), c=18.407(3) Å and Z=8. The structure was determined from 2936 observed reflections and refined to a final R value of 0.061. The complex is a binuclear doubly bridged species in which one metal atom is six coordinate while the other is five coordinate. Its 95Mo NMR spectrum in DMF shows a sharp peak at 124 ppm and a second broader much weaker peak at 51 ppm.  相似文献   

6.
7.
H1N1 strains of influenza A virus isolated during the influenza season of 1991–92 were divided into two groups according to the property of host-specific hemagglutination. Group 1 viruses agglutinated human and chicken red blood cells. Group 2 viruses agglutinated human but not chicken red blood cells. The viruses of both groups, however, showed the same antigenic structure determined with ferret antisera. The virus clones which were plaque-purified twice from a group 2 virus retained the characteristic of host-specific hemagglutination after five successive passages in MDCK cells, indicating that this phenomenon is genetically determined. However, the amino acid, sequences of the hemagglutinin (HA) polypeptides deduced from the nucleotide sequences of the HA gene of the two groups did not show any differences between them. This suggests a difference in amino acids in some other polypeptide(s), which affects the host-specific hemagglutination.  相似文献   

8.
9.
在2009年全球A(H1N1)流感病毒大流行期间,多种A(H1N1)大流行流感疫苗被批准应用。一种以AS03-为佐剂的A(H1N1)大流行流感疫苗(Pandemrix)被应用于47个国家,达3 100万剂。在应用一年后,开始出现接种Pandemrix疫苗所引起的发作性睡病的报道。发作性睡病是一种尚无治疗方法的疾病,主要症状表现是患者在白天常发生不可自控的睡眠。报道首先来自于瑞士,然后丹麦,继而欧洲的许多国家。迄今为止,已有1 300多人因接种Pandemrix疫苗发生了发作性睡病,生产Pandemrix疫苗的葛兰素史克(Glaxo Smith-Kline,GSK)公司已承认了两者间的关联。2015年7月1日,科学转化医学杂志的一篇文章揭示Pandemrix疫苗中的流感病毒核蛋白刺激所产生的抗体可以和人下丘脑泌素受体2发生交叉反应,表明Pandemrix疫苗激发的自身免疫反应是其引起发作性睡病的主因,提示有必要显著减少或去除流感病毒疫苗中的流感病毒核蛋白。  相似文献   

10.
We investigate the dynamics of the 2009 influenza A (H1N1/S-OIV) pandemic by analyzing data obtained from World Health Organization containing the total number of laboratory-confirmed cases of infections--by country--in a period of 69 days, from 26 April to 3 July, 2009. Specifically, we find evidence of exponential growth in the total number of confirmed cases and linear growth in the number of countries with confirmed cases. We also find that, i) at early stages, the cumulative distribution of cases among countries exhibits linear behavior on log-log scale, being well approximated by a power law decay; ii) for larger times, the cumulative distribution presents a systematic curvature on log-log scale, indicating a gradual change to lognormal behavior. Finally, we compare these empirical findings with the predictions of a simple stochastic model. Our results could help to select more realistic models of the dynamics of influenza-type pandemics.  相似文献   

11.
At this critical juncture when the world has not yet recovered from the threat of avian influenza, the virus has returned in the disguise of swine influenza, a lesser known illness common in pigs. It has reached pandemic proportions in a short time span with health personnel still devising ways to identify the novel H1N1 virus and develop vaccines against it. The H1N1 virus has caused a considerable number of deaths within the short duration since its emergence. Presently, there are no effective methods to contain this newly emerged virus. Therefore, a proper and clear insight is urgently required to prevent an outbreak in the future and make preparations that may be planned well in advance. This review is an attempt to discuss the historical perspective of the swine flu virus, its epidemiology and route of transmission to better understand the various control measures that may be taken to fight the danger of a global pandemic.  相似文献   

12.
13.
14.
“Survival of the fittest” is an old axiom laid down by the great evolutionist Charles Darwin and microorganisms seem to have exploited this statement to a great extent. The ability of viruses to adapt themselves to the changing environment has made it possible to inhabit itself in this vast world for the past millions of years. Experts are well versed with the fact that influenza viruses have the capability to trade genetic components from one to the other within animal and human population. In mid April 2009, the Centers for Disease Control and Prevention and the World Health Organization had recognized a dramatic increase in number of influenza cases. These current 2009 infections were found to be caused by a new strain of influenza type A H1N1 virus which is a re-assortment of several strains of influenza viruses commonly infecting human, avian, and swine population. This evolution is quite dependent on swine population which acts as a main reservoir for the reassortment event in virus. With the current rate of progress and the efforts of heath authorities worldwide, we have still not lost the race against fighting this virus. This article gives an insight to the probable source of origin and the evolutionary progress it has gone through that makes it a potential threat in the future, the current scenario and the possible measures that may be explored to further strengthen the war against pandemic.  相似文献   

15.
Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.  相似文献   

16.

Background

In April 2009, novel swine-origin influenza viruses (S-OIV) were identified in patients from Mexico and the United States. The viruses were genetically characterized as a novel influenza A (H1N1) strain originating in swine, and within a very short time the S-OIV strain spread across the globe via human-to-human contact.

Methodology

We conducted a comprehensive computational search of all available sequences of the surface proteins of H1N1 swine influenza isolates and found that a similar strain to S-OIV appeared in Thailand in 2000. The earlier isolates caused infections in pigs but only one sequenced human case, A/Thailand/271/2005 (H1N1).

Significance

Differences between the Thai cases and S-OIV may help shed light on the ability of the current outbreak strain to spread rapidly among humans.  相似文献   

17.
Influenza A (H1N1) virus is a severe threat worldwide. It is important to gain a better understanding of the mechanism of the infection. In the paper, we established a computational framework to investigate the crosstalk between the virus and the host, by finding out the proteins that the virus is attacking. The targeted proteins were predicted by taking human proteins laid on the same GO functions or processes as the virus proteins. One hundred and one core proteins were identified. The results provide some knowledge of the possible biological processes and molecular interactions caused by the viral infection, including the host responses.  相似文献   

18.
Introduction of a novel influenza virus into the human population leads to the occurrence of pandemic events, such as the one caused by pandemic influenza A (H1N1) 2009 virus. The severity of infections caused by this virus in young adults was greater than that observed in patients with seasonal influenza. Fatal cases have been associated with an abnormal innate, proinflammatory immune response. A critical role for natural killer cells during the initial responses to influenza infections has been suggested. In this study, we assessed the association of killer-cell immunoglobulin-like receptors (KIRs) with disease severity by comparing KIR gene content in patients with mild and severe pandemic influenza virus infections to a control group. We found that activator (KIR3DS1 and KIR2DS5) and inhibitory (KIR2DL5) genes, encoded in group B haplotypes containing the cB01, cB03 and tB01 motifs, are associated with severe pandemic influenza A (H1N1) 2009 infections. Better understanding of how genetic variability contributes to influenza virus pathogenesis may help to the development of immune intervention strategies aiming at controlling the severity of disease.  相似文献   

19.
20.
The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.The recent emergence of swine-origin H1N1 influenza A virus (pandemic H1N1/09) in humans has heightened awareness of how the burden of morbidity and mortality due to influenza is associated with the appearance of new genetic variants (5) and of the genetic and epidemiological determinants of viral transmission (8). The emergence of pandemic H1N1/09 is also unprecedented in recorded history as it means that three antigenically distinct lineages of influenza A virus—pandemic H1N1/09 and the seasonal H1N1 and H3N2 viruses— currently cocirculate within human populations.Although the presence of multiple subtypes of influenza A virus may place an additional burden on public health resources, it also provides a unique opportunity to compare the patterns and dynamics of evolution in these viruses on a similar time scale. Indeed, one of the most interesting secondary effects of the current H1N1/09 pandemic has been an increased vigilance for cases of influenza-like illness and hence an intensified sampling of seasonal H1N1 and H3N2 viruses during the typical influenza “off-season” (i.e., spring-summer) in the northern hemisphere. Because the influenza season in the northern hemisphere generally runs from November through March, with a usual peak in January or February, influenza viruses sampled outside of this period are of special interest.The current model for the global spatiotemporal dynamics of influenza A virus is that the northern and southern hemispheres represent ecological “sinks” for this virus, with little ongoing viral transmission during the summer months (9). In contrast, more continual viral transmission occurs within the tropical “source” population (13) that is most likely centered on an intense transmission network in east and southeast Asia (10). However, the precise epidemiological and evolutionary reasons for this major geographic division, and for the seasonality of influenza A virus in general, remain uncertain (1, 4). Evidence for this “sink-source” ecological model is that viruses sampled from successive seasons in localities such as New York State do not usually form linked clusters on phylogenetic trees, indicating that they are not connected by direct transmission through the summer months (7). Similar conclusions can be drawn for the United States as a whole and point to multiple introductions of phylogenetically distinct lineages during the winter (6), followed by complex patterns of spatial diffusion (14). However, despite the growing epidemiological and phylogenetic data supporting this model, it is also evident that there is relatively little sequence data from seasonal influenza viruses that are sampled from April to October in the northern hemisphere. Hence, it is uncertain whether extended chains of transmission can occur during this time period, even though this may have an important bearing on our understanding of influenza seasonality.To address these issues, we examined the evolutionary behavior of seasonal H1N1 and H3N2 viruses as they cocirculated during a single time period—(late) April to June 2009—within a single locality (New York State). Not only are levels of influenza virus transmission in the northern hemisphere usually very low during this time period, but in this particular season the human host population was also experiencing the emerging epidemic of pandemic H1N1/09.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号