首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effect of gamma-aminobutyric acid (GABA) and other GABA-receptor agonists (3-aminopropanesulphonic acid and muscimol) on the noradrenaline-induced stimulation of polyphosphoinositide metabolism in rat hippocampal slices. Formation of water-soluble inositol phosphates, and polyphosphoinositide metabolism were studied in hippocampal slices prelabelled with [3H]myoinositol. Noradrenaline induced formation of inositol mono-, bis- and trisphosphate during 10 min incubation in the presence of lithium; activation of phospholipase C by noradrenaline was also reflected by the hydrolysis of polyphosphoinositides and by the increased metabolism of phosphatidylinositol. GABA-receptor agonists were unable to activate per se phospholipase C; however, when added together with a low concentration of noradrenaline, they greatly potentiated the noradrenaline-stimulated polyphosphoinositide metabolism. We conclude that GABA-receptor agonists potentiate the effect of noradrenaline on polyphosphoinositide turnover and we discuss the role of this neurotransmitter interaction in the physiology of the hippocampus.  相似文献   

2.
Ethanol causes a transient activation of the phosphoinositide-specific phospholipase C in intact hepatocytes and mimics the action of receptor-mediated agonists [Hoek, Thomas, Rubin & Rubin (1987) J. Biol. Chem. 262, 682-691]. Preincubation of the hepatocytes with phorbol esters which activate protein kinase C prevented this effect of ethanol: phorbol ester treatment inhibited the ethanol-induced phosphorylase activation, the increase in intracellular free Ca2+ concentrations measured in quin 2-loaded hepatocytes, and the changes in concentrations of inositol phosphates, phosphoinositides and phosphatidic acid. Several lines of evidence indicate that these effects were mediated by protein kinase C. Phorbol esters acted in a concentration range where they activate protein kinase C; phorbol esters that do not activate protein kinase C were not effective in inhibiting the effects of ethanol. The permeant diacylglycerol oleoyl-acetylglycerol also inhibited the effects of ethanol, but other diacylglycerols were not effective in the intact cells. The inhibition of ethanol-induced Ca2+ mobilization by phorbol esters was prevented by preincubating the cells with the protein kinase C inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H7) and sphingosine. H7 also enhanced the Ca2+ mobilization induced by ethanol in cells that were not pretreated with phorbol esters, indicating that the transient nature of the ethanol-induced Ca2+ mobilization may be due to an activation of protein kinase C caused by the accumulation of diacylglycerol. These data support a model whereby ethanol activates the phosphoinositide-specific phospholipase C, possibly by affecting receptor-G-protein-phospholipase C interactions in the membrane.  相似文献   

3.
The effects of chronic alcohol feeding on biliary glutathione excretion were studied in rats pair fed diets containing either ethanol (36% of total energy) or isocaloric carbohydrate for 4-6 weeks. An exteriorized biliary-duodenal fistula was established and total glutathione (GSH) and oxidized glutathione (GSSG) were measured. A significant decrease was observed in rats fed alcohol chronically compared to their pair fed controls in the biliary excretion of GSH (55.7 +/- 37.0 vs 243.1 +/- 29.0 micrograms/ml bile, p less than 0.025) as well as biliary GSSG (12.5 +/- 5.0 vs 49.9 +/- 8.0 micrograms/ml bile, p less than 0.05) and in bile flow (23.1 +/- 1.6 vs 29.2 +/- 1.3 micrograms/min, p less than 0.05). An acute dose of ethanol tended to exaggerate the decrease on biliary GSH and GSSG in the two groups of animals. The depression in biliary GSH could not be attributed to decreased GSH synthesis since S35-L-methionine incorporation into hepatic and biliary GSH was unchanged or even increased after chronic ethanol feeding.  相似文献   

4.
Ethanol oxidation by hepatocytes from fasted rats was determined in the presence and absence of 0.2 mM ethyl hyrazinoacetate, a transaminase inhibitor which blockes the malate-aspartate cycle. 20 μM phenazine methosulfate caused the larges increase (nearly 150%) in ethanol utilization. 5 μM norepinephrine caused a 50% increase in ethanol oxidation, and most fo this increase was caused by stimulation of the α-glycerophosphate shuttle, since it remained in the presence of ethyl hydrazinoacetate. 1 μM glucagon caused a 25% increase in ethanol uptake, and most of this increase was abolished by ethyl hydrazinoacetate, indicating that the malate-aspartate cycle was involved. 25 μM dinitrophenol increased ethanol use by 20% and this increase was nearly unaffected by ethyl hydrazinoacetate. The results indicate that ethanol utilization, under the conditionsused, is primarily controlled by the capacity of the shuttle systems, and not by the capacity of teh respiratory chain.  相似文献   

5.
Effect of chronic ethanol feeding on oxysterols in rat liver   总被引:2,自引:0,他引:2  
It was our hypothesis that, as a consequence of increased oxidative stress, cholesterol-derived hydroperoxides and oxysterols are increased in livers of rats exposed to ethanol. To test this we dosed Wistar rats (approximately 0.1 kg initial body weight) with ethanol chronically (rats fed a nutritionally complete liquid diet containing ethanol as 35% of total calories; sampled liver at approximately 6-7 weeks). We measured concentrations of 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha-OOH and 7 beta-OOH) as well as 7 alpha- and 7 beta-hydroxycholesterol (7 alpha-OH and 7 beta-OH), and 3 beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto). In response to chronic alcohol feeding, there were significant elevations in the concentrations of 7 alpha-OOH (+169%, P = 0.005) and 7 beta-OOH (+199%, P = 0.011). Increases in the concentrations of hepatic 7-keto (+74%, P = 0.01) and decreases in cholesterol (-43%; P = 0.03) also occurred. In contrast, the concentrations of both 7 alpha-OH and 7 beta-OH were not significant (NS). However, when oxysterols in chronic ethanol-fed rats were expressed relative to cholesterol there were significant increases in 7-keto/cholesterol (P = 0.0006), 7 alpha-OH/cholesterol (P = 0.0018) and 7 beta-OH/cholesterol (P = 0.0047). In conclusion, this is the first report of increased 7 alpha-OOH, 7 beta-OOH, and 7-keto in liver of rats and their elevation in chronic experimental alcoholism represent evidence of increased oxidative stress.  相似文献   

6.
Ethanol feeding to rats daily for 40 days induces the secretion of surfactant-like-particles in intestine. The isolated lipoprotein particles were enriched with alkaline phosphatase activity and had high phosphatidylcholine content. There was no difference in disaccharidases activities associated with the particles from control and ethanol fed rats. These results suggest that ethanol induced surfactant-like-particles in rat intestine.  相似文献   

7.
The presence of the pertussis toxin (PTX) insensitive GTP-binding proteins (G-proteins) Gq and/or G11 has been demonstrated in three different prolactin (PRL) and growth hormone (GH) producing pituitary adenoma cell lines. Immunoblocking of their coupling to hormone receptors indicates that Gq and/or G11 confer throliberin (TRH) responsive phospholipase C (PL-C) activity in these cells. The contention was substantiated by immunoprecipitation analyses snowing that anti Gq/11-sera coprecipitated PL-C activity. In essence, only Gq/11 (but neither Gi2, Gi3 nor Go) seems to mediate the TRH-sensitive PL-C activity, while Go may be coupled to a basal or constitutive PL-C activity. Immunoblocking studies imply that the B-complex also, to some extent, may stimulate GH3 pituitary cell line PL-C activity. Finally, the steady state levels of Gq/11 mRNA and protein were downregulated upon long term exposure of the GH3 cells to TRH (but not to vasoactive intestinal peptide = VIP).  相似文献   

8.
9.
Chronic ethanol feeding sensitizes Kupffer cells to activation by lipopolysaccharide (LPS), leading to increased production of tumor necrosis factor-alpha (TNF-alpha). Adiponectin treatment protects mice from ethanol-induced liver injury. Because adiponectin has anti-inflammatory effects on macrophages, we hypothesized that adiponectin would normalize chronic ethanol-induced sensitization of Kupffer cells to LPS-mediated signals. Serum adiponectin concentrations were decreased by 45% in rats fed an ethanol-containing diet for 4 wk compared with pair-fed rats. Adiponectin dose dependently inhibited LPS-stimulated accumulation of TNF-alpha mRNA and peptide in Kupffer cells from both pair- and ethanol-fed rats. Kupffer cells from ethanol-fed rats were more sensitive to both globular (gAcrp) and full-length adiponectin (flAcrp) than Kupffer cells from pair-fed controls with suppression at 10 ng/ml adiponectin after chronic ethanol feeding. Kupffer cells expressed both adiponectin receptors 1 and 2; chronic ethanol feeding did not change the expression of adiponectin receptor mRNA or protein. gAcrp suppressed LPS-stimulated ERK1/2 and p38 phosphorylation as well as IkappaB degradation at 100-1,000 ng/ml in Kupffer cells from both pair- and ethanol-fed rats. However, only LPS-stimulated ERK1/2 phosphorylation was sensitive to 10 ng/ml gAcrp. gAcrp also normalized LPS-stimulated DNA binding activity of early growth response-1 with greater sensitivity in Kupffer cells from rats fed chronic ethanol. In conclusion, these results demonstrate that Kupffer cells from ethanol-fed rats are more sensitive to the anti-inflammatory effects of both gAcrp and flAcrp. Suppression of LPS-stimulated ERK1/2 signaling by low concentrations of gAcrp was associated with normalization of TNF-alpha production by Kupffer cells after chronic ethanol exposure.  相似文献   

10.
Male Wistar rats, (2 months old) were randomly divided into two groups according to the diet offered (C-control and E-ethanol treated rats). Final body weight was significantly increased but pancreatic weight as a percentage of body weight was decreased in ethanol treated rats. Volume density, number of pancreatic poly peptide (PP)-cells per islet and per micron 2 of islet were significantly increased. PP-cells were abundant and occupied the whole periphery of islets in the splenic part of the pancreas. Those cells showed strong immunopositivity. At the ultrastructural level PP granules had predominantly less electron density. The mean diameter of PP granules was significantly increased and the number of granules of larger diameter was greater in the E group of rats, than in the controls.  相似文献   

11.
Increase of phosphatidic acid (PA) accumulation in response to caerulein (Cae) and after subtotal pancreatectomy (SP) has been previously described and phospholipase D (PLD) derived PA involvement in pancreatic regeneration was suggested. We also described decrease of Cae stimulated PA accumulation after a single dose of ethanol (both in vitro and in vivo). The present study was undertaken in order to determine the influence of chronic ethanol feeding on basal and Cae stimulated PA accumulation and other parameters of pancreatic regeneration in control and ethanol feed rats. Male rats were pair fed ad libitum with an isocaloric liquid diet (Lieber De Carli) with or without ethanol. In vitro study: pair fed rats were killed after 2 or 6 weeks of feeding, pancreata were dissected out and weighted, dispersed pancreatic acini were then prepared and loaded with 3H myristic acid in order to label the phosphatidylcholine pool. Phosphatidic acid (3H PA) accumulation, in the presence of propranolol, was measured after stimulation with increasing doses of Cae. In vivo study: PA was measured 3 days after SP or sham operation in both groups of rats, and also after 1 h of Cae infusion (0.25 microg/kg/h). Pancreatic weight, amylase, protein, RNA and DNA content were established. Results: In vitro study 1) Basal PLD activity expressed as PA accumulation was significantly elevated after 6 weeks of ethanol feeding in comparison to the control values (28%). 2) Cae in doses ranging from 100 pM to 5 nM was not able to stimulate PA accumulation in isolated pancreatic acini prepared from ethanol fed rats. In vivo study: 1) Body weight and pancreatic weight were similar in, both the ethanol fed and the control groups, after 2 and 6 weeks. 2) Ethanol feeding significantly decreased total amylase content in the pancreas, but did not change protein, RNA and DNA content. 3) in contrast to the control animals in which SP caused a 71.1% increase of PA accumulation over the sham operation, subtotal pancreatectomy was not able to stimulate PA in rats fed with ethanol. 4) Also Cae infusion did not stimulate PA accumulation in the ethanol fed animals in comparison to the controls. Since the involvement of PLD activation in the early stages of pancreatic regeneration was postulated, our results suggest that chronic ethanol feeding can influence this process by decrease of PA production, probably because of the inhibition of hydrolytic PLD activity in the presence of ethanol. This could be one of the mechanisms responsible for pancreatic injury after chronic ethanol consumption.  相似文献   

12.
13.
Phospholipase Cepsilon (PLCepsilon) is a newly described effector of the small GTP-binding protein H-Ras. Utilizing H-Ras effector mutants, we show that mutants H-Ras(G12V/E37G) and H-Ras(G12V/D38N) suppressed integrin activation in an ERK-independent manner. H-Ras(G12V/D38N) specifically activated the PLCepsilon effector pathway and suppressed integrin activation. Inhibition of PLCepsilon activation with a kinase-dead PLCepsilon mutant prevented H-Ras(G12V/D38N) from suppressing integrin activation, and low level expression of H-Ras(G12V/D38N) could synergize with wild-type PLCepsilon to suppress integrins. In addition, knockdown of endogenous PLCepsilon with small interfering RNA blocked H-Ras(G12V/D38N)-mediated integrin suppression. Suppressing integrin function with the H-Ras(G12V/D38N) mutant reduced cell adhesion to von Willebrand factor and fibronectin; this reduction in cell adhesion was blocked by coexpression of the kinase-dead PLCepsilon mutant. These results show that H-Ras suppresses integrin affinity via independent Raf and PLCepsilon signaling pathways and demonstrate a new physiological function for PLCepsilon in the regulation of integrin activation.  相似文献   

14.
Methotrexate (MTX) has been implicated in the pathogenesis of hepatic fibrosis. However, no information exists regarding the effects of MTX on hepatic collagen metabolism. Therefore, we studied the role of MTX in hepatic collagen production in vivo in rats receiving an 8-week course of varying doses of MTX. Twenty-four hours prior to sacrifice animals received an injection of [5-3H]proline. Collagen was extracted with hot trichloroacetic acid and the proteinbound [3H]hydroxyproline was used as a measure of de novo collagen production. The hepatic collagen content was essentially the same in the control and treatment groups in spite of evidence of hepatotoxicity. Similarly, no significant differences were present among the control and MTX-treated groups in the de novo absolute collagen production. In summary, we found no evidence of increased hepatic fibrogenesis in small groups of animals after 8 weeks of treatment with MTX. Data clearly supporting the claim that MTX itself is responsible for hepatic fibrosis are lacking.  相似文献   

15.
Rats were fed ethanol (Lieber-DeCarli diet) for three weeks. Stimulation of cerebellar adenylate cyclase by calcium was measured in control (pair-fed), chronic-alcohol and alcohol-withdrawn animals. No differences in the sensitivity or maximal stimulation of this enzyme were observed among these groups. Ethanol in,vitro (1%) stimulated brain adenylate cyclase approximately 50% in the presence or absence of calcium. Chronic alcohol exposure in,vivo did not alter the sensitivity of adenylate cyclase to stimulation by alcohol in,vitro.  相似文献   

16.
Lipid chemoattractants, such as platelet-activating factor and leukotriene B4, as well as the peptide chemoattractant FMLP, were found to stimulate [3H]phosphatidic acid ([3H]PA) formation in 1-O-[3H]octadecyl-lyso platelet-activating factor-labeled rabbit neutrophils. The stimulation of [3H]PA formation appears to result from the activation of phospholipase D (PLD), because in the presence of ethanol, chemoattractant stimulation produced [3H]phosphatidylethanol, the characteristic compound produced by PLD at the expense of [3H]PA formation. The PLD activation by all chemoattractants tested was primed by cytochalasin B and revealed a similar time dependence. However, lipid chemoattractants were less potent as compared with FMLP, and the maximal stimulation by the former was lower than that by the latter. From these results, it is concluded that the mechanism of PLD activation by lipid chemoattractants is similar to, but different from, that by FMLP. Cytochalasin B stimulated degranulation and [3H]PA formation in agonist-stimulated neutrophils, and their stimulations were well correlated. Ethanol inhibited both agonist-stimulated [3H]PA formation and degranulation in a concentration-dependent manner, but the inhibition in degranulation was much less than that in [3H]PA formation. These results suggest that PLD activation is involved in degranulation, but another signaling pathway may also be required for full stimulation of degranulation. When the radiolabeled neutrophils were stimulated by chemoattractants for 5 min, 1,2-[3H]diglyceride was found to accumulate. The accumulation was inhibited by either ethanol or the phosphatidate phosphohydrolase inhibitor propranolol, which indicates that PA produced by PLD can be converted to 1,2-diglyceride by phosphatidate phosphohydrolase. Under these conditions, propranolol did not inhibit degranulation stimulated by chemoattractants. These results indicate that PA produced by PLD is more important than its metabolite diglyceride for the degranulation of rabbit neutrophils.  相似文献   

17.
The prolonged feeding of ethanol to rats alters in vitro mitochondrial transport of calcium. Hepatic mitochondria isolated from rats fed ethanol for 7 weeks exhibited decreased retention of calcium in the presence of 4mM-Pi. This defect was associated with enhanced efflux of calcium when mitochondria were incubated with EGTA. Acetaldehyde at low, "physiological" concentrations (100 microM) enhanced calcium retention by mitochondria but this response was blunted after chronic ethanol administration. The in vitro actions of acetaldehyde appear to be mediated, in part, by its metabolism in mitochondria since pretreatment of rats with cyanamide (an aldehyde dehydrogenase inhibitor) prevents this effect.  相似文献   

18.
Heavy alcohol consumption is an independent risk factor for type 2 diabetes. Although the exact mechanism by which alcohol contributes to the increased risk is unknown, impaired glucose disposal is a likely target. Insulin-stimulated glucose disposal in adipocytes is regulated by two separate and independent pathways, the PI3K pathway and the Cbl/TC10 pathway. Previous studies suggest that chronic ethanol feeding impairs insulin-stimulated glucose transport in adipocytes in a PI3K-independent manner. In search of potential targets of ethanol that would affect insulin-stimulated glucose transport, we investigated the effects of 4-wk ethanol feeding to male Wistar rats on the Cbl/TC10 pathway in isolated adipocytes. Chronic ethanol feeding inhibited insulin-stimulated cCbl phosphorylation compared with pair feeding. Insulin receptor and Akt/PKB phosphorylation were not affected by ethanol feeding. Chronic ethanol exposure also impaired cCbl and TC10 recruitment to a lipid raft fraction isolated from adipocytes by detergent extraction. Furthermore, chronic ethanol feeding increased the amount of activated TC10 and filamentous actin in adipocytes at baseline and abrogated the ability of insulin to further activate TC10 or polymerize actin. These results demonstrate that the impairment in insulin-stimulated glucose transport observed in adipocytes after chronic ethanol feeding to rats is associated with a disruption of insulin-mediated Cbl/TC10 signaling and actin polymerization.  相似文献   

19.
20.
Tamoxifen (TAM) is the endocrine therapeutic agent the most widely used in the treatment of breast cancer, and it operates primarily through the induction of apoptosis. In this study, we attempted to elucidate the non-ER mediated mechanism behind TAM treatment, involving the phospholipase C-protein kinase C (PLC-PKC) mediated phospholipase D (PLD) activation pathway, using multimodality methods. In TAM treated MCF7 cells, the PLC and PLD protein and mRNA levels increased. Phosphatidylethanol (PEt) and diacylglycerol (DAG) generation also increased, showing increased activity of PLD and PLCgamma1. Translocation of PKCalpha, from cytosol to membrane, was observed in TAM treated cells. By showing that both PKC and PLC inhibitors could reduce the effects of TAM-induced PLD activation, we confirmed the role of PKC and PLC as upstream regulators of PLD. Finally, we demonstrated that TAM treatment reduced the viability of MCF7 cells and brought about rapid cell death. From these results, we confirmed the hypothesis that TAM induces apoptosis in breast cancer cells, and that the signal transduction pathway, involving PLD, PLC, and PKC, constitutes one of the possible mechanisms underlying the non-ER mediated effects associated with TAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号