首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蔗糖磷酸化酶属于糖苷水解酶13家族,能够催化蔗糖的可逆磷酸解。利用其广泛的底物混杂性,蔗糖磷酸化酶可以将葡萄糖基转移至不同的受体合成熊果苷、甘油葡萄糖苷、低聚糖及多酚化合物的衍生物等产物,这些催化产物可广泛应用于食品、药品、化妆品等行业。随着酶催化技术和蛋白质工程的发展,蔗糖磷酸化酶受到了越来越多的关注,该酶的应用范围也得到了扩大。本文综述了近年来蔗糖磷酸化酶在酶的来源、结构、功能及应用领域等的研究进展,同时讨论了该酶的蛋白质工程改造方法与局限性,并展望了该酶可能的研究方向。  相似文献   

2.
植物蔗糖合酶的结构、功能及应用   总被引:1,自引:0,他引:1  
蔗糖合酶(Sucrose synthase, EC 2.4.1.13, SuS)是植物中广泛存在的一种糖基转移酶,能催化蔗糖的分解及合成反应,是叶片光合作用产物蔗糖进入各种代谢途径所必需的关键酶之一,在植物的生长发育过程中发挥着至关重要的作用.近年研究表明,蔗糖合酶不仅在植物淀粉合成、提高植株抗逆性和影响植株生长等方面扮演着重要的角色,也能为机体提供核苷单糖供体,而这个特性也使得蔗糖合酶基因可以作为一个催化成分被用于核苷单糖的生物合成,具有广泛的应用前景.本文对蔗糖合酶家族基因的染色体定位及功能、蔗糖合酶的结构及亚细胞定位,以及其所具有的生物学功能进行了综述,旨在为蔗糖合酶的进一步研究奠定理论基础.  相似文献   

3.
右旋糖酐蔗糖酶是一种以蔗糖为唯一底物,将蔗糖分子中D-葡萄糖基催化转移到受体分子上的葡萄糖基转移酶。利用右旋糖酐蔗糖酶的转糖基作用,以蔗糖为葡萄糖糖基供体,槲皮素为糖基受体,对槲皮素糖苷的酶法合成进行了探索。通过对该酶催化反应体系、催化反应条件及产物分析的研究,结果表明:在25℃下,右旋糖酐蔗糖酶能够在30%DMSO-70%乙酸-乙酸钙(0.02 mol/L,pH值5.4)的反应体系中催化合成一种槲皮素葡萄糖苷,在这个反应体系下,以10%的蔗糖作为糖基供体,槲皮素为糖基受体,右旋糖酐蔗糖酶活力为40 U/mL,转速为150 r/min,槲皮素糖苷的转化率最高,可达39.5%。通过质谱分析确定是一种槲皮素单糖苷,分子量为464。该研究结果为黄酮类物质的糖基化修饰奠定了基础。  相似文献   

4.
陆娟  卢丽丽  肖敏 《微生物学报》2014,54(6):601-607
Levan果聚糖是一类分子中含有大量β-(2,6)果糖苷键主链和少量β-(2,1)果糖苷键支链的聚糖。部分微生物来源的Levan果聚糖具有抗肿瘤、抗糖尿病、免疫增强、降血脂等重要的生物活性,在医药和功能食品方面具有巨大的应用潜能。由于微生物发酵液提取法产量相对较低,而化学法合成过程繁琐,Levan果聚糖的酶法合成备受关注。Levan蔗糖酶(Levansucrase,EC 2.4.1.10)属于糖苷酶家族GH68,是一类β-螺旋桨家族蛋白,其催化糖类合成遵循non-Leloir糖基转移酶机制,以蔗糖为底物转果糖基合成Levan果聚糖。部分微生物Levan蔗糖酶的分子结构及基因的表达调控已经得到阐明,Levan果聚糖的酶法合成得到广泛研究。本文综述了Levan蔗糖酶的催化机制、酶分子结构、酶基因表达调控以及酶在合成Levan果聚糖中的应用,以促进微生物Levan蔗糖酶及Levan果聚糖的研究和应用。  相似文献   

5.
菊糖作为益生元和膳食纤维,具有许多重要的生理功能,广泛应用于食品、医药等领域.微生物菊糖蔗糖酶可以以蔗糖为底物合成较植物菊糖具有更高分子量的菊糖.文中通过基因数据库筛选获得一段拟表达菊糖蔗糖酶的基因.通过N-端和C-端截断的方式,保留中间催化域,构建重组质粒.将重组质粒在大肠杆菌表达系统中表达,粗酶液经Ni2+亲和层析...  相似文献   

6.
蔗糖是自然界中广泛存在的一种天然产物.在植物等生命体中,蔗糖磷酸合酶(Sucrose phosphate synthase,SPS)是蔗糖合成的限速酶.SPS催化合成蔗糖-6-磷酸;蔗糖磷酸酶(Sucrose Phosphatase,SPP)进一步把蔗糖-6-磷酸上的磷酸根水解下来而形成蔗糖.近几十年来关于SPS的研究...  相似文献   

7.
利用重组大肠杆菌Escherichia coli Rosetta(DE3)/pET-SPase发酵生产蔗糖磷酸化酶(EC 2.4.1.7,Sucrose phosphorylase,SPase)。收集的菌体经高压破碎后离心得到粗酶液,通过镍NTA亲和层析、超滤除盐后得到电泳纯的SPase,纯化后的SPase的比酶活是原来的2.1倍,酶活回收率达到82.7%。经SDS-PAGE电泳测定,重组SPase的分子量约为59 kDa。该酶在不高于37℃,pH 6.0~6.7的条件下比较稳定,最适催化温度与最适催化pH分别为37℃,pH 6.7,该酶对蔗糖的米氏常数(Km)为7.3 mmol/L,最大反应速率(Vmax)为0.2μmol/(min.mg)。此外文中还以蔗糖和氢醌为底物,利用重组SPase催化合成α-熊果苷。其最佳反应条件为:20%蔗糖,200 U/mL的酶液,1.6%氢醌,pH 6.0~6.5,25℃,反应21 h。α-熊果苷的摩尔产率为78.3%,α-熊果苷的产量为31 g/L。  相似文献   

8.
考察了肠膜明串珠菌(Leuconostoc mesenteroides)G123厌氧发酵产蔗糖磷酸化酶下游的分离纯化工艺.收集的菌体经超声破碎得到粗酶液,通过硫酸铵沉淀、透析、阴离子交换层析分离后获得了电泳纯的蔗糖磷酸化酶,酶活回收率为31.7%,酶的分子量约为55.7 kD,纯化后的蔗糖磷酸化酶比活为115.3 U/mg.该酶在中性及偏酸性(pH5.5-8.0)情况下,酶稳定性较好,较报道的肠膜明串珠菌(Leuconostoc mesenteroides)B-1149的pH稳定范围宽.同时该酶在37℃保存2 h,酶活几乎没有下降.利用获得的纯酶以氢醌和蔗糖为底物催化合成α-熊果苷,在23 U/mL的酶反应体系中,60%蔗糖、5%氢醌、pH7.5,37℃,反应12 h,氢醌转化率达到16.3%,α-熊果苷的产量为20g/L.  相似文献   

9.
蔗糖:蔗糖-1-果糖基转移酶的表面展示及酶学性质分析   总被引:1,自引:0,他引:1  
【目的】蔗糖:蔗糖-1-果糖基转移酶催化1分子蔗糖上的果糖基转移到另一个蔗糖分子上,形成1-蔗果三糖和葡萄糖。在低聚果糖中,1-蔗果三糖益生素活性最高。本研究将该酶展示在酵母菌细胞表面上,并用于1-蔗果三糖的制备。【方法】将来自莴苣的蔗糖:蔗糖-1-果糖基转移酶基因克隆到用于酵母细胞表面展示的表达载体上,并在解脂亚罗酵母菌中进行异源表达,表达的酶展示在该细胞表面上,然后以蔗糖为底物,研究表面展示的蔗糖:蔗糖-1-果糖基转移酶的性质。【结果】免疫荧光实验结果表明蔗糖:蔗糖-1-果糖基转移酶已展示在酵母菌的细胞表面上,高效液相色谱结果表明酵母表面展示的该酶具有转移酶的催化活性。该酶的最适作用温度、最适作用p H分别为45°C和7.5;该酶的催化活性受Zn2+和Cu2+的抑制,受Ca2+激活;该酶重复使用7次后,酶活下降50%。表面展示的蔗糖:蔗糖-1-果糖基转移酶和3%蔗糖混合后在40°C条件下孵育30 min后,所产1-蔗果三糖含量最高为20.8 mmol/L。【结论】蔗糖:蔗糖-1-果糖基转移酶在解脂亚罗酵母菌中得到成功表达,并展示在其细胞表面上,生化研究表明该重组蛋白具有果糖基转移酶活性,且催化蔗果三糖的生成。表面展示的蔗糖:蔗糖-1-果糖基转移酶作为一种全细胞催化剂能够用于1-蔗果三糖的制备。  相似文献   

10.
尿苷二磷酸葡萄糖(UDPG)是一种重要的糖类物质合成前体.生物法合成具有低成本、无污染和高立体选择性等传统化学法不具备的优势.利用纯酶催化的生物法以基于Leloir途径改进的一锅法、蔗糖合酶催化的两步法以及糖合成反应可逆催化等产UDPG,实现了UDPG的高产.全细胞催化法利用稳定的胞内酶系产UDPG,胞内生成的UDPG作为底物直接参与产物的催化合成,可行性高且成本更低.综述了酶法和全细胞催化法合成UDPG这两种最主要生物法的研究进展.  相似文献   

11.
糖基化反应能有效改善化合物的水溶性、稳定性、生物利用度等性质,利用糖苷水解酶类和糖基转移酶类对生物活性化合物进行糖基化修饰已成为研究热点。相比于糖基转移酶类,糖苷水解酶类在大规模催化中具有来源丰富、成本低的优势。其中,蔗糖磷酸化酶因其卓越的糖基化活性和广泛的底物特异性,在化工领域受到人们的广泛关注。文中综述了蔗糖磷酸化酶的结构与催化特性,概述了蔗糖磷酸化酶的定向改造,同时系统性地总结了蔗糖磷酸化酶在糖基化反应中的应用及与其他酶的联合应用。并且,基于蔗糖磷酸化酶的研究现状,结合笔者研究团队的多年工作经验,探讨了该课题的未来发展方向。  相似文献   

12.
河套蜜瓜果实发育过程中糖积累与蔗糖代谢相关酶的关系   总被引:3,自引:0,他引:3  
以河套蜜瓜为试材,采用外部形态观测与内部生理指标测定相结合的方法,对其果实发育过程中果实生长模式以及果实中蔗糖、果糖、葡萄糖和淀粉含量以及蔗糖代谢相关酶活性进行测定,以揭示河套蜜瓜果实生长发育过程中糖的代谢积累与相关酶的关系.结果显示:(1)河套蜜瓜果实生长速率呈单"S"曲线,果实发育早期以积累葡萄糖为主,进入成熟期后蔗糖积累量迅速增加,最终由蔗糖和己糖共同构成果实品质.(2)在河套蜜瓜果实成熟期前,蔗糖磷酸合成酶(SPS)活性维持较低水平,进入成熟期后,SPS活性迅速升高;蔗糖合成酶(SS)活性在成熟期前为分解活性大于合成活性,成熟期后表现为合成活性大于分解活性;在整个果实发育期,酸性转化酶(AI)活性较低,中性转化酶(NI)活性始终高于AI.(3)在果实整个发育期,蔗糖含量与蔗糖代谢酶的净活力呈极显著正相关,蔗糖代谢相关酶共同作用决定果实中蔗糖含量.研究表明,在河套蜜瓜果实发育前期,以蔗糖分解代谢为主,且蔗糖合成酶和中性转化酶是催化蔗糖分解的关键酶;果实成熟期间,蔗糖代谢转为合成方向为主,蔗糖合成酶和蔗糖磷酸合成酶在蔗糖积累中起主导作用.  相似文献   

13.
姚绍嫦  黄鼎  谭勇  顾晋源  李良波  黄荣韶 《广西植物》2021,41(11):1939-1948
为提高牛大力块根的产量与品质,该研究以不同发育时期(移栽6、12、18、24、30、36个月)的牛大力块根为材料,采用紫外分光光度法对糖类含量及其相关酶活性进行测定,研究它们在牛大力块根发育过程中的动态变化规律。结果表明:(1)牛大力块根的生长发育进程可初步划分为形成期(移栽6~12个月)、迅速膨大期(移栽12~24个月)与稳定膨大期(移栽24~36个月)三个阶段。淀粉与蔗糖分别是牛大力块根中主要的多糖与可溶性糖。在牛大力块根发育过程中,多糖类物质的含量逐渐增加,而可溶性糖含量逐渐减少,两者之间呈显著负相关,推测可溶性糖的分解代谢有利于促进多糖类物质的积累。(2)蔗糖的分解代谢是蔗糖合酶(SUS)、蔗糖磷酸合酶(SPS)、酸性转化酶(AI)与中性转化酶(NI)等多种相关酶协同作用的结果。SUS在牛大力块根发育过程中发挥着既催化蔗糖合成,又催化蔗糖分解的双重调节作用,SUS(合成)的活性不断上升,至移栽36个月达到峰值,极显著高于其他时期; SUS(分解)的活性从移栽6个月至24个月逐渐上升,但在块根稳定膨大期稍有下降; 其净活性为催化蔗糖分解,在移栽12个月达到最高。转化酶AI和NI的活性均在块根发育过程中逐渐上升,且AI活性高于NI活性,提示AI可能在蔗糖代谢分解过程中发挥更重要的作用。该研究结果可为今后深入研究牛大力多糖类成分积累和调控机制提供理论依据,并为提高牛大力药材的产量与品质提供技术指导。  相似文献   

14.
目的:使用表达耐热蔗糖磷酸化酶的大肠杆菌重组工程菌E. coli BL21/pET-Spase和耐热纤维二糖磷酸化酶的大肠杆菌重组工程菌E. coli BL21/pET-Cpase,发酵培养后粗酶液作为催化剂,以价格低廉的蔗糖为原料合成红景天苷。方法:分别构建耐热蔗糖磷酸化酶和耐热纤维二糖磷酸化酶大肠杆菌重组菌,然后将重组菌、蔗糖、酪醇和磷酸混合,得到反应混合物,使反应混合物在45℃下转化,而产生红景天苷。结果:在耐热蔗糖磷酸化酶酶液1200 U/L、耐热纤维二糖磷酸化酶酶液500 U/L、蔗糖110 g/L、酪醇30 g/L和磷酸50 m M的浓度下,反应条件为pH 7.0、温度45℃、转速50转/分、反应时间32小时后,红景天苷浓度达到23.7 g/L。结论:本研究使用蔗糖磷酸化酶和纤维二糖磷酸化酶联合催化的工艺,成功地高收率合成了红景天苷。同时,本研究构建的耐热磷酸化酶酶活高,处理简单,为拓展糖苷类似物的合成提供了一种新的方法。  相似文献   

15.
右旋糖酐蔗糖酶工程菌株的构建及其培养条件的研究   总被引:2,自引:1,他引:2  
[目的]右旋糖酐蔗糖酶是一种以蔗糖为底物,催化转移D-葡萄糖基生成α-葡聚糖或低聚糖的葡萄糖基转移酶.[方法]利用PCR扩增技术,将已获得的右旋糖酐蔗糖酶基因dexYG亚克隆到表达载体PET28a( )上,转化E.coli BL21(DE3),经过卡那霉素抗性筛选和酶切验证后,得到右旋糖酐蔗糖酶工程菌株BL21(DE3)/pET28-dexYG.[结果]经IPTG诱导该基因在E.coli BL21(DE3)中能有效表达,在诱导过程中菌体生长受到抑制.通过对培养时间、IPTG浓度、培养温度、菌浓(OD600)和pH值等产酶因素的优化考察,得到最佳培养条件为:培养时间5h、IPTG浓度0.5mmol/L、25℃、OD600值1.0和pH6.0.酶活力由最初的5.39U/mL提高到35.62U/mL,其中pH值对产酶活力影响最大,在pH6.0时的最高产酶活力是LB原始pH条件下最高酶活的3.5倍,并且pH值也是导致在诱导后期酶活迅速下降的主要原因之一.[结论]酶的表达和酶活的研究结果表明,构建的工程菌株能够异源高效表达右旋糖酐蔗糖酶,并且表现出较高的酶活力.  相似文献   

16.
利用酶的催化特性从520株土壤分离放线菌中筛选对α-淀粉酶和α-蔗糖酶均具有抑制作用的产α-糖苷酶抑制剂菌株,并对其进行菌株归属鉴定。试验结果表明:从土壤分离放线菌中筛选到对α-淀粉酶酶活力抑制率在75%以上的菌株45株,从这45株放线菌中筛选到1株对α-蔗糖酶抑制率在40%以上的菌株。通过对其进行形态学观察、生理生化特性鉴别,并结合16S rRNA基因序列分析,初步判定该菌株为天蓝色链霉菌Streptomyces coelicolo。  相似文献   

17.
作为蔗糖的一种异构体,异麦芽酮糖具有许多独特的生理功能,例如非致龋齿性、益生元特性、适合糖尿病人使用以及对大多数细菌和酵母的抗性等,因而受到广泛关注。异麦芽酮糖主要是通过蔗糖异构酶催化蔗糖转化形成,反应中同时生成的海藻酮糖以及少量的葡萄糖和果糖,给工业生产带来困扰。简要论述异麦芽酮糖的特性、生理功能及其生产中存在的问题,重点论述蔗糖异构酶催化蔗糖转化的机理,为异麦芽酮糖在食品工业中的开发利用提供参考。  相似文献   

18.
温度对棉纤维糖代谢相关酶活性的影响   总被引:3,自引:0,他引:3  
以棉纤维比强度高的科棉1号和中等强度的美棉33B 2个基因型棉花品种为材料,于2005年在江苏南京(长江流域下游棉区)和徐州(黄河流域黄淮棉区)设置不同播期(4月25日和5月25日)试验,研究了不同温度下棉纤维发育过程中蔗糖酶、蔗糖合成酶、磷酸蔗糖合成酶和β-1,3-葡聚糖酶等糖代谢相关酶活性的动态变化特征及其与纤维长度和比强度形成的关系.结果表明:棉纤维伸长发育期,蔗糖酶、β-1,3-葡聚糖酶活性较高;纤维加厚发育期,蔗糖合成酶和磷酸蔗糖合成酶活性上升速度快、活性高,蔗糖酶和β-1,3-葡聚糖酶活性下降速度快.纤维伸长期,蔗糖酶活性升高对纤维的伸长具有明显促进作用;纤维加厚发育期,提高蔗糖合成酶、磷酸蔗糖合成酶活性及加快蔗糖酶和β-1,3-葡聚糖酶活性下降速度有利于提高纤维比强度.科棉1号前期蔗糖酶、β-1,3-葡聚糖酶活性及中后期蔗糖合成酶、磷酸蔗糖合成酶活性均较美棉33B高.在本试验条件下,23.3 ℃是高强纤维形成的适宜温度,23.3 ℃~25.5 ℃是纤维长度形成的适宜温度.  相似文献   

19.
α-半乳糖苷酶催化棉子糖的水解,可以提高甜菜制糖中的蔗糖得率。我们从专性嗜热芽孢杆菌中筛选到α-半乳糖苷酶的菌株T59(尚未鉴定)。该菌株生长温度在45—60℃范围内,本实验培养温度为55℃。  相似文献   

20.
作为生物催化剂,酶蛋白介导的生化反应具有条件温和、绿色环保等优点。然而相比化学催化剂,天然酶功能的局限性制约了它在生物制造领域的广泛应用。前期研究表明,酶蛋白除了催化专一性外,同时还展现出混杂性的一面,可在特定条件下催化非天然模式反应。这一特性为酶分子功能重塑提供了新思路,可用来指导人工酶设计,拓展天然酶的催化边界,实现新颖酶促反应类型,以扩大酶催化应用场景。本文从酶催化功能混杂性背后可能的进化机制入手,综述了当前诱导酶催化功能混杂性的常用策略,如定向进化、构象动力学、反应条件诱导及祖先酶重构等技术,并从催化机制、构效关系及适应性进化等多个角度,结合近年来相关研究实例,探讨了催化功能混杂性背后的分子机制,为突破天然酶促反应局限性、创制催化非天然反应的高效人工酶元件提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号