首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ataxia telangiectasia (A-T) is an autosomal recessive disease caused by mutations in the A-T mutated (ATM) gene. The gene encodes a serine/threonine kinase with important roles in the cellular response to DNA damage, including the activation of cell cycle checkpoints and induction of apoptosis. Although these functions might explain the cancer predisposition of A-T patients, the molecular mechanisms leading to glucose intolerance and diabetes mellitus (DM) are unknown. We have investigated the pathogenesis of DM in a mouse model of A-T. Here we show that young Atm-deficient mice show normal fasting glucose levels and normal insulin sensitivity. However, oral glucose tolerance testing revealed delayed insulin secretion and resulting transient hyperglycemia. Aged Atm-/- mice show a pronounced increase in blood glucose levels and a decrease in insulin and C-peptide levels. Our findings support a role for ATM in metabolic function and point toward impaired insulin secretion as the primary cause of DM in A-T.  相似文献   

2.
ATM phosphorylates histone H2AX in response to DNA double-strand breaks   总被引:38,自引:0,他引:38  
A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.  相似文献   

3.
A-T (ataxia telangiectasia) individuals frequently display gonadal atrophy, and Atm-/- mice show spermatogenic failure due to arrest at prophase of meiosis I. Chromosomal movements take place during meiotic prophase, with telomeres congregating on the nuclear envelope to transiently form a cluster during the leptotene/zygotene transition (bouquet arrangement). Since the ATM protein has been implicated in telomere metabolism of somatic cells, we have set out to investigate the effects of Atm inactivation on meiotic telomere behavior. Fluorescent in situ hybridization and synaptonemal complex (SC) immunostaining of structurally preserved spermatocytes I revealed that telomere clustering occurs aberrantly in Atm-/- mice. Numerous spermatocytes of Atm-/- mice displayed locally accumulated telomeres with stretches of SC near the clustered chromosome ends. This contrasted with spermatogenesis of normal mice, where only a few leptotene/zygotene spermatocytes I with clustered telomeres were detected. Pachytene nuclei, which were much more abundant in normal mice, displayed telomeres scattered over the nuclear periphery. It appears that the timing and occurrence of chromosome polarization is altered in Atm-/- mice. When we examined telomere-nuclear matrix interactions in spermatocytes I, a significant difference was observed in the ratio of soluble versus matrix-associated telomeric DNA sequences between meiocytes of Atm-/- and control mice. We propose that the severe disruption of spermatogenesis during early prophase I in the absence of functional Atm may be partly due to altered interactions of telomeres with the nuclear matrix and distorted meiotic telomere clustering.  相似文献   

4.
AMPK is an AMP-activated protein kinase that plays an important role in regulating cellular energy homeostasis. Metabolic stress, such as heat shock and glucose starvation, causes an energy deficiency in the cell and leads to elevated levels of intracellular AMP. This results in the phosphorylation and activation of AMPK. LKB1, a tumor suppressor, has been identified as an upstream kinase of AMPK. We found that in response to treatment with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), the LKB1 deficient cancer cell line, HeLa, exhibited AMPK-α phosphorylation. This indicates the existence of an LKB1-independent AMPK-α phosphorylation pathway. ATM is a protein that is deficient in the disease ataxia telangiectasia (A-T). We measured the activation of AMPK by AICAR in the normal mouse embryo fibroblast cell line, A29, and the mouse cell line lacking the ATM protein, A38. In A38 cells, the level of AICAR-induced AMPK-α phosphorylation was significantly lower than that found in A29 cells. Furthermore, phosphorylation of AMPK in HeLa and A29 cells was inhibited by an ATM specific inhibitor, KU-55933. Our results demonstrate that AICAR treatment could lead to phosphorylation of AMPK in an ATM-dependent and LKB1-independent manner. Thus, ATM may function as a potential AMPK kinase in response to AICAR treatment.  相似文献   

5.
Ataxia-telangiectasia (A-T) is a genetic disease, associated with progressive motor impairment and a lack of functional ATM protein. It has been reported that immunoreactive tyrosine hydroxylase and dopamine transporter are reduced in an Atm-/- mouse model of A-T. These observations led to a hypothesis that A-T is associated with loss of nigrostriatal dopamine and prompted the launch of clinical trials to evaluate a therapeutic utility of the anti-parkinsonian drug, l-DOPA. To test for dopamine depletion more directly, we measured regional levels of monoamines and their metabolites in the Atm-/- mouse brain. We also measured levels of NAD+, a cofactor for dopamine biosynthesis and substrate of the DNA damage surveillance enzyme, poly(ADP-ribose) polymerase (PARP). Constitutive activation of PARP has been posited to cause NAD+ depletion. We observed no reduction in monoamine transmitters and no depletion of NAD+, or other high energy phosphate donors in the adult Atm-/- cerebellum, striatum, or ventral mesencephalon. However, our studies did reveal a progressive sensorimotor impairment in Atm-/- mice that may serve as a relevant proxy for progressive neurological impairment in the human disease. Our results call into question the involvement of dopamine in A-T and the therapeutic strategy of enhancing dopaminergic function with l-DOPA.  相似文献   

6.
7.
Evandro F. Fang 《Autophagy》2017,13(2):442-443
ATM is a 350 kDa serine/threonine kinase best known for its role in DNA repair and multiple cellular homeostasis pathways. Mutation in ATM causes the disease ataxia telangiectasia (A-T) with clinical features including ataxia, severe cerebellar atrophy and Purkinje cell loss. In a cross-species study, using primary rat neurons, the roundworm C. elegans, and a mouse model of A-T, we showed that loss of ATM induces mitochondrial dysfunction and compromised mitophagy due to NAD+ insufficiency. Remarkably, NAD+ repletion mitigates both the DNA repair defect and mitochondrial dysfunction in ATM-deficient neurons. In C. elegans, NAD+ repletion can clear accumulated dysfunctional mitochondria through restoration of compromised mitophagy via upregulation of DCT-1. Thus, NAD+ ties together DNA repair and mitophagy in neuroprotection and intimates immediate translational applications for A-T and related neurodegenerative DNA repair-deficient diseases.  相似文献   

8.
Deletion mutations were efficiently recovered in mouse liver after total-body irradiation with X rays by using a transgenic mouse "gpt-delta" system that harbored a lambda EG10 shuttle vector with the red and gam genes for Spi- (sensitive to P2 lysogen interference) selection. We incorporated this system into homozygous Atm-knockout mice as a model of the radiosensitive hereditary disease ataxia telangiectasia (AT). Lambda phages recovered from the livers of X-irradiated mice with the Atm+/+ genotype showed a dose-dependent increase in the Spi- mutant frequency up to sixfold at 50 Gy over the unirradiated control of 2.8x10(-6). The livers from Atm-/- mice yielded a virtually identical dose-response curve for X rays with a background fraction of 2.4x10(-6). Structural analyses revealed no significant difference in the proportion of -1 frameshifts and larger deletions between Atm+/+ and Atm-/- mice, although larger deletions prevailed in X-ray-induced Spi- mutants irrespective of Atm status. While a possible defect in DNA repair after irradiation has been strongly indicated in the literature for nondividing cultured cells in vitro from AT patients, the Atm disruption does not significantly affect radiation mutagenesis in the stationary mouse liver in vivo.  相似文献   

9.
Patients with the genetic disorder ataxia-telangiectasia (A-T) display a pleiotropic phenotype that includes neurodegeneration, immunodeficiency, cancer predisposition and hypersensitivity to ionizing radiation. The gene responsible is ATM, and ATM:-knockout mice recapitulate most features of A-T. In order to study the involvement of oxidative stress in the A-T phenotype, we examined mice deficient for Atm and overexpressing human Cu/Zn superoxide dismutase (SOD1). We report that elevated levels of SOD1 exacerbate specific features of the murine Atm- deficient phenotype, including abnormalities in hematopoiesis and radiosensitivity. The data are consistent with the possibility that oxidative stress contributes to some of the clinical features associated with the A-T phenotype.  相似文献   

10.
Ataxia-telangiectasia, an evolving phenotype   总被引:10,自引:0,他引:10  
Chun HH  Gatti RA 《DNA Repair》2004,3(8-9):1187-1196
Ataxia-telangiectasia (A-T) is a progressive neurodegenerative disorder, with onset in early childhood and a frequency of approximately 1 in 40,000 births in the United States. A-T is seen among all races and is most prominent among ethnic groups with a high frequency of consanguinity. The syndrome includes: progressive cerebellar ataxia, dysarthric speech, oculomotor apraxia, choreoathetosis and, later, oculocutaneous telangiectasia. Immunodeficiency with sinopulmonary infections, cancer susceptibility (usually lymphoid), and sensitivity to ionizing radiation are also characteristic. Laboratory findings include: (1) elevated alphafetoprotein (AFP), (2) cerebellar atrophy on magnetic resonance imaging, (3) reciprocal translocations between chromosomes 7 and 14 in lymphocytes, (4) absence or dysfunction of the ATM protein, (5) radiosensitivity, as demonstrated by colony survival assay (CSA), and (6) mutations in the ATM gene. The latter are usually truncating or splicing mutations; approximately 10% are missense mutations. Mutations are found across the entire gene. Almost all recurring mutations are found on unique haplotypes that represent founder effects and ancestral relationships between patients. In addition to radiosensitivity and sensitivity to radiomimetic chemicals, the phenotype of A-T cells includes defective damage-induced activation of the cell cycle checkpoints at G1, S and G2/M. With the aid of molecular testing, A-T can now be distinguished from other autosomal recessive cerebellar ataxias (ARCAs) such as Friedreich ataxia, Mre11 deficiency (AT-like disease), and the oculomotor apraxias 1 (aprataxin deficiency) and 2 (senataxin deficiency). Other "A-T variants" include: (1) Nijmegen breakage syndrome (NBS) or nibrin/Nbs1 deficiency, with microcephaly and mental retardation but without ataxia, apraxia, or telangiectasia, and 2) A-T(Fresno), a phenotype that combines features of both NBS and A-T, with mutations in the ATM gene. The term "A-T variant" has a diminishing usefulness.  相似文献   

11.
Ataxia-Telangiectasia (A-T) is an autosomal recessive disorder resulting in a myriad of abnormalities, including progressive neurodegeneration and cancer predisposition. At the cellular level, A-T is a disease of chronic oxidative stress (OS) causing damage to proteins, lipids, and DNA. OS is contributed to by pro-oxidative transition metals such as iron that catalyze the conversion of weakly reactive oxygen species to highly reactive hydroxyl radicals. Iron-associated OS has been linked to neurodegeneration in Alzheimer's and Parkinson's diseases and development of lymphoid tumors (which afflict ~30% of A-T patients). To investigate iron regulation in A-T, iron indexes, regulatory genes, and OS markers were studied in livers of wild-type and Ataxia telangiectasia mutated (Atm) null mice on control or high-iron diets. Atm(-/-) mice had increased serum iron, hepatic iron, and ferritin and significantly higher Hepcidin compared with wild-type mice. When challenged with the high-iron diet, Bmp6 and Hfe expression was significantly increased. Atm(-/-) mice had increased protein tyrosine nitration and significantly higher Heme Oxygenase (decycling) 1 levels that were substantially increased by a high-iron diet. Ferroportin gene expression was significantly increased; however, protein levels were unchanged. We demonstrate that Atm(-/-) mice have a propensity to accumulate iron that is associated with a significant increase in hepatic OS. The iron-induced increase in hepcidin peptide in turn suppresses ferroportin protein levels, thus nullifying the upregulation of mRNA expression in response to increased OS. Our results suggest that increased iron status may contribute to the chronic OS seen in A-T patients and development of disease pathology.  相似文献   

12.
ATM: the product of the gene mutated in ataxia-telangiectasia.   总被引:5,自引:0,他引:5  
Ataxia-telangiectasia mutated (ATM) is the product of the gene mutated in the human genetic disorder ataxia-telangeictasia (A-T). It is a 370 kDa protein that is a member of the phosphatidyl inositol 3-kinases superfamily. A-T cells and those derived from Atm-/- mice are characterized by hypersensitivity to ionizing radiation and defective cell cycle checkpoints. Defects are observed at all cell cycle checkpoints in A-T cells post-irradiation including the G1/S interface where ATM plays an important role in the activation of the tumour suppressor gene product p53. Activation leads to the induction of p21/WAF1, inhibition of cyclin-dependent kinase activity, failure to phosphorylate key substrates such as the retinoblastoma protein and consequently G1 arrest. ATM also plays an important role in the regulation and surveillance of meiotic progression. Absence of ATM gives rise to a spectrum of defects including immunodeficiency, neurodegeneration, radiosensitivity and cancer predisposition. It is clear that a better definition of the role of ATM in DNA damage recognition, cell cycle control and cell signalling may assist in the treatment of the progressive neurodegeneration in this syndrome.  相似文献   

13.
The Atm-/- mice recapitulate most of the defects observed in ataxia-telangiectasia (A-T) patients, including a high incidence of lymphoid tumors and immune defects characterized by defective T cell differentiation, thymus hypoplasia, and defective T-dependent immune responses. To understand the basis of the T cell developmental defects in Atm-/- mice, a functional TCR alpha beta transgene was introduced into these mutant mice. Analysis of the Atm-/-TCR alpha beta+ mice indicated that the transgenic TCR alpha beta can rescue the defective T cell differentiation and partially rescue the thymus hypoplasia in Atm-/- mice, indicating that thymocyte positive selection is normal in the Atm-/- mice. In addition, cell cycle analysis of the thymocytes derived from Atm-/-TCR alpha beta+ and control mice suggested that Atm is involved in the thymocyte expansion. Finally, evaluation of the T-dependent immune responses in Atm-/-TCR alpha beta+ mice indicated that Atm is dispensable for normal T cell function. Therefore, the defective T-dependent immune responses in Atm-/- mice must be secondary to greatly reduced T cell numbers in these mutant mice.  相似文献   

14.
Ataxia-telangiectasia (A-T) is a human genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype, in which a major neurological feature is progressive ataxia due to degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical and cellular features of the human disease, but the neurological phenotype is barely expressed. We present evidence for the accumulation of DNA strand breaks in the brains of Atm(-/-), supporting the notion that ATM plays a major role in maintaining genomic stability. We also show a perturbation of the steady state levels of pyridine nucleotides. There is a significant decrease in both the reduced and the oxidized forms of NAD and in the total levels of NADP(T) and NADP(+) in the brains of Atm(-/-) mice. The changes in NAD(T), NADH, NAD(+), NADP(T), and NADP(+) were progressive and observed primarily in the cerebellum of 4-month-old Atm(-/-) mice. Higher rates of mitochondrial respiration were also recorded in 4-month-old Atm(-/-) cerebella. Taken together, our findings support the hypothesis that absence of functional ATM results in continuous stress, which may be an important cause of the degeneration of cerebellar neurons in A-T.  相似文献   

15.
Previously, we have shown that ethanol-induced apoptosis in cultured neurons is accompanied by changes in cellular lipid profiles. In the present study, the effects of ethanol on brain lipid metabolism were studied using 7-day-old C57BL/6ByJ mice, which display apoptotic neurodegeneration upon exposure to ethanol. The brain lipids were extracted 4-24 h after the ethanol or saline treatment, and analyzed by TLC. We found that the levels of triglyceride, cholesterol ester, ceramide, and N-acylphosphatidylethanolamine increased significantly in the brains of ethanol-treated mice compared to those of saline-treated mice. Concomitantly, ethanol reduced Thr172 phosphorylation of AMP-activated protein kinase (AMPK) alpha subunits. Ethanol also reduced phosphorylation of acetyl-CoA carboxylase, a substrate of AMPK and a lipogenic enzyme known to be activated by dephosphorylation. In contrast, lipid profiles of 19-day-old mouse brains, which scarcely manifested neurodegeneration upon ethanol exposure, were not significantly affected by ethanol. Also, the basal levels of Thr172-phosphorylated AMPK alpha were lower in these brains than in 7-day-old mouse brains, and no detectable changes in the phosphorylation status were observed by ethanol treatment. Our findings indicate that the ethanol-induced apoptotic neurodegeneration observed in mice during restricted developmental periods is accompanied by alterations in both the lipid content and the activity of AMPK in the brain.  相似文献   

16.
Despite the rarity of the human autosomal recessive disease ataxia telangiectasia (A-T) (affecting approximately 1/40000-1/100000), interest in the function of the mutated gene product (ATM) in this syndrome is intense. Mutation of this single gene can lead to a diverse array of features, including cancer, immune defects, infertility and radiosensitivity. However, it is the pronounced and debilitating neurodegeneration that is the hallmark of this disease. Thus, from a clinical perspective, it is ATM function in the nervous system that, arguably, is the most important to understand. Although the case for DNA damage as a causative factor for neurodegeneration in A-T is compelling, new data point to a possible link to defects in neurogenesis. Thus, whereas ATM is important for nervous system development, it could also be important for adult neurogenesis.  相似文献   

17.
Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.  相似文献   

18.
Three water-soluble carboxy nitroxide antioxidants, 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl, 4-carboxy-2,2,6,6-tetramethylpiperidin-1-yloxyl, and 3-carboxy-2,2,5,5-tetramethylpyrrolidin-1-yloxyl, show significant impact on the postirradiation survival rates of ataxia telangiectasia (A-T) cells compared to normal cells, an assay which represents a model for understanding the impact of ROS damage on the A-T phenotype. The effects of these antioxidants are much more significant than those of vitamin E or Trolox (a water-soluble vitamin E analog), studied using the same cell survival model.  相似文献   

19.
Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.  相似文献   

20.
Yan M  Kuang X  Scofield VL  Shen J  Lynn WS  Wong PK 《Steroids》2007,72(5):415-421
We have previously demonstrated that spontaneous DNA synthesis in immature thymocytes of Atm-/- mice is elevated, and that treatment with the glucocorticoid dexamethasone (Dex) attenuates this increased DNA synthesis and prevents the development of thymic lymphomas. Deregulation of c-myc may drive the uncontrolled proliferation of Atm-/- thymocytes, since upregulation of c-myc parallels the elevated DNA synthesis in the cells. In this study, we show that the glucocorticoid receptor (GR) is expressed at high levels in Atm-/- thymocytes and in Atm-/- thymic lymphoma cells, although serum glucocorticoid (GC) levels in Atm-/- mice are similar to those in Atm+/+ mice. In cultured Atm-/- thymic lymphoma cells treated with Dex, GR nuclear translocation occurs, resulting in suppression of DNA synthesis and c-myc expression at both the mRNA and protein levels. Interestingly, the GR antagonist RU486 also causes GR nuclear translocation, but does not affect DNA synthesis and c-myc expression in Atm-/- thymic lymphoma cells. As expected, RU486 reverses the suppressive effects of Dex on DNA synthesis and c-myc expression. Administration of Dex to Atm-/- mice decreases the elevated c-Myc protein levels in their thymocytes. These findings suggest that GC/GR signaling plays an important role in regulating c-myc expression in Atm-/- thymocytes and thymic lymphoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号