首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TK Sato  I Nauhaus  M Carandini 《Neuron》2012,75(2):218-229
Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space.  相似文献   

2.
Summary It is proposed as a working hypothesis that conformational changes propagated like waves along intracellular fibrils (tubules, microtubules, microfilaments) have an electric component,i.e., there are waves of disturbance of electric potential in the fibrils. The paper considers the unavoidable consequences of the wave. The latter is accompanied by local electric field in the boundary layer of cytoplasmic fluid. Both positively and negatively charged particles may be attracted to the fibril in certain regions of the field and, being attracted, the particle may be under the action of longitudinal component of electric force. When the force is strong enough to move the particle with wave velocity, the particle will travel smoothly along the fibril, otherwise the movement will be saltatory or of agitation type. Net electroosmotic flow in one direction in the boundary layer of fluid may be expected when the waves are propagated in series. Turbulent motion of the fluid caused by the waves may provide the basis for activated diffusion. Asymmetry of the wave may account for polar transport of this sort. The electric field transmitted along the fibril across a sieve pore in phloem may facilitate electroosmotically the flow through the pore. Quantitative requirements of the hypothesis that electric field generated by the waves may account for different aspects of longitudinal transport in cells are apparently met.  相似文献   

3.
4.
In different cell types, activation of signal transduction pathways leads to the generation of calcium oscillations and/or waves. Due to this important impact for cellular function, calcium waves are the subject of intensive investigations. To study interactions of cell organelles with no influence of the cell membrane, sarcoplasmic reticulum (SR) vesicles and well-coupled mitochondria were reconstituted. For the first time, we demonstrate the generation and propagation of calcium waves in a suspension of sarcoplasmic reticulum vesicles, embedded in an agarose gel. The propagation dynamics resemble those of calcium waves in living cells. Moreover, the addition of well-coupled mitochondria leads to more pronounced and significantly faster propagating waves, demonstrating the importance of the mitochondrial Ca(2+) transport. The experimental and simulation results indicate the resemblance of the in vitro system to an excitable medium.  相似文献   

5.
Clusters of calcium-loaded sarcoplasmic reticulum (SR) vesicles in agarose gel were previously shown to behave as an excitable medium that propagates calcium waves. In a 3D-hexagonal disposition, the distance between neighboring spheres (which may stand for SR vesicles) is constant and the relationship between distance and vesicular protein concentration is expected to be nonlinear. To obtain a distribution of SR vesicles at different protein concentrations as homogeneous as possible, liquid agarose gels were carefully stirred. Electron micrographs, however, did not confirm the expected relationship between inter-SR vesicle distance and vesicular protein concentration. Light micrographs, to the contrary, resulted in a protein concentration-dependent disposition of clusters of SR vesicles, which is described by a linear function. Stable calcium waves in agarose gel occurred at SR vesicle protein concentrations between 7 and 16 g/l. At lower protein concentrations, local calcium oscillations or abortive waves were observed. The velocities of calcium waves were optimum at approximately 12 g/l and amounted to nearly 60 microm/s. The corresponding distance of neighboring calcium release units was calculated to be approximately 4 microm. The results further show that calcium signaling in the described reaction-diffusion system is optimal in a relatively small range of diffusion lengths. A change by +/-2 microm resulted in a reduction of the propagation velocity by 40%. It would appear that 1), the distance between calcium release units (clusters of ryanodine receptors in cells) is a sensitive parameter concerning propagation of Ca2+ signals; and 2), a dysfunction of the reaction-diffusion system in living cells, however, might have a negative effect on the spreading of intracellular calcium signals, thus on the cell's function.  相似文献   

6.
A. Henaut 《BioControl》1990,35(1):127-139
When females ofPimpla instigator inspect objects as possible oviposition sites, they use their antennae to make the objects resonate. The antennae are not used as drum sticks, but serve merely to transmit shock waves generated within the female's body. Transmission of the shock waves to the substrate is mediated through vesicles situated at the extreme tip of the distal segment of each antenna. The present results support the hypothesis that acoustical inspection of the environment is a part of the exploratory behaviour of this insect.   相似文献   

7.
It has previously been shown that activated murine T lymphocytes express intracellular vesicles containing the class I major histocompatibility complex (MHC) antigen H-2K. Evidence has also been provided that such vesicles may be part of a cellular pathway of spontaneous H-2K antigen internalization and recycling, which is specific to T-lymphoid cells. Dual fluorescence flow cytometry has now been used to establish that H-2K antigen is acidified upon internalization in concanavalin A-stimulated but not lipopolysaccharide-stimulated murine splenocytes, thus providing further support that in T lymphoblasts this class I MHC antigen may travel intracellular routes similar to those reported for other cell surface receptors.  相似文献   

8.
Target-derived neurotrophins signal from nerve endings to the cell body to influence cellular and nuclear responses. The retrograde signal is conveyed by neurotrophin receptors (Trks) themselves. To accomplish this, activated Trks may physically relocalize from nerve endings to the cell bodies. However, alternative signaling mechanisms may also be used. To identify the vehicle wherein the activated Trks are located and transported, and to identify associated motor proteins that would facilitate transport, we use activation-state specific antibodies in concert with immunoelectron microscopy and deconvolution microscopy. We show that the'activated Trks within rat sciatic nerve axons are preferentially localized to coated and uncoated vesicles. These vesicles are moving in a retrograde direction and so accumulate distal to a ligation site. The P-Trk containing vesicles, in turn, colocalize with dynein components, and not with kinesins. Collectively, these results indicate activated Trk within axons travel in vesicles and dynein is the motor that drives these vesicles towards the cell bodies.  相似文献   

9.
In this paper, we show that surface plasmon polaritons (SPPs) can be sustained by a single row of holes periodically drilled on a perfect electric conductor surface. These SPPs can be strongly confined in the transverse plane and they possess an excellent modal shape. In the terahertz regime, large propagation length is available for highly confined SPPs on a real-metal surface waveguide. As the dispersion characteristics of such SPPs can be controlled by the surface geometry, unusual total reflection phenomenon occurs when waves travel along a nonuniform surface waveguide with gradually increasing hole depths.  相似文献   

10.
A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.  相似文献   

11.
Summary Preparations of biomembranes, consisting of membrane vesicles, were analyzed with the analytical ultracentrifuge. Under certain conditions depending on the speed of rotation and the temperature, a sedimentation profile was observed that was highly characteristic for membranous material. From the sedimentation coefficients obtained, we calculated particle weights for the various well-defined membrane components. In certain types of preparations the particle weights of two adjacent components differed on average by a factor of 2. When vesicles obtained by fragmentation of biomembranes were compared with the granular vesicles present in intact cells, the accordance in diameters was striking. This may indicate that the size of vesicles is determined by purely physical factors.  相似文献   

12.
The rhythmic movement of the microtubular axostyle in the termite flagellate, Pyrsonympha vertens, was analyzed with polarization and electron microscopy. The protozoan axostyle is birefringent as a result of the semi-crystalline alignment of approximately 2,000 microtubules. The birefringence of the organelle permits analysis of the beat pattern in vivo. Modifications of the beat pattern were achieved with visible and UV microbeam irradiation. The beating axostyle is helically twisted and has two principal movements, one resembling ciliary and the other flagellar beating. The anterior portion of the beating axostyle has effective and recovery phases with each beat thereby simulating the flexural motion of a beating cilium. Undulations develop from the flexural flipping motion of the anterior segment and travel along the axostyle like flagellar waves. The shape of the waves differs from that of flagellar waves, however, and are described as sawtooth waves. The propagating sawtooth waves contain a sharp bend, approximately 3 micron in length, made up of two opposing flexures followed by a straight helical segment approximately 23 micron long. The average wavelength is approximately 25 micron, and three to four sawtooth waves travel along the axostyle at one time. The bends are nearly planar and can travel in either direction along the axostyle with equal velocity. At temperatures between 5 degrees and 30 degrees C, one sees a proportionate increase or decrease in wave propagation velocity as the temperature is raised or lowered. Beating stops below 5 degrees C but will resume if the preparation is warmed. A microbeam of visible light shone on a small segment of the axostyle causes the typical sawtooth waves to transform into short sine-like waves that accumulate in the area irradiated. Waves entering the affected region appear to stimulate waves already accumulated there to move, and waves that emerge take on the normal sawtooth wave pattern. The effective wavelengths of visible light capable of modifying the wave pattern is in the blue region of the spectrum. The axostyle is severed when irradiated with an intense microbeam of UV light. Short segments of axostyle produced by severing it at two places with a UV microbeam can curl upon themselves into shapes resembling lockwashers. We propose that the sawtooth waves in the axostyle of P. vertens are generated by interrow cross-bridges which are active in the straight regions.  相似文献   

13.
Birds migrate over vast distances at substantial costs. The highly dynamic nature of the air makes the selection of the best travel route difficult. We investigated to what extent migratory birds may optimise migratory route choice with respect to wind, and if route choice can be subject to natural selection. Following the optimal route, calculated using 21 years of empirical global wind data, reduced median travel time by 26.5% compared to the spatially shortest route. When we used a time‐dependent survival model to quantify the adaptive benefit of choosing a fixed wind‐optimised route, 84.8% of pairs of locations yielded a route with a higher survival than the shortest route. This suggests that birds, even if incapable of predicting wind individually, could adjust their migratory routes at a population level. As a consequence, this may result in the emergence of low‐cost flyways representing a global network of aerial migratory pathways.  相似文献   

14.
Hippocampal neurons exhibit periodically recurring growth cone-like structures, referred to as "waves," that emerge at the base of neurites and travel distally to the tip. As a wave nears the tip, the neurite undergoes retraction, and when it reaches the tip, the neurite undergoes a burst of growth. At 1 day in culture, during early axon outgrowth, axons undergo an average 7.5-microm retraction immediately preceding wave arrival at the tip followed by 12-microm growth immediately after arrival (an average net growth of 4.5 microm). In branched axons, waves often selectively travel down one branch or the other. Growth selectively occurs in the branch chosen by the wave. In dendrites, which grow much slower on average, wave-associated retractions are much greater, resulting in less net growth. In the presence of Brefeldin A, which disrupts membrane traffic through the Golgi apparatus and leads to retraction of the axon, axonal waves continue to be associated with both growth spurts and retractions. The magnitude of the growth spurts is not significantly different from untreated axons, but wave-associated retractions are significantly increased. The close association between waves and cyclical elongation suggests that waves may act to bring about this pattern of growth. Our results also show that modulation of regularly occurring retraction phases plays a prominent role in determining average outgrowth rates.  相似文献   

15.
Sheep seminal vesicles contain two immunologically distinct phospholipase C (PLC) enzymes that can hydrolyze phosphatidylinositol (PI) (Hofmann, S.L., and Majerus, P.W. (1982) J. Biol. Chem. 257, 6461-6469). One of these enzymes (PLC-I) has been purified to homogeneity; the second (PLC-II) has been purified 2600-fold from a crude extract of seminal vesicles. In the present study we have compared the ability of these purified enzymes to hydrolyze PI, phosphatidylinositol 4-phosphate (PI-4-P), and phosphatidylinositol 4,5-diphosphate (PI-4,5-P2). Using radiolabeled substrates in small unilamellar phospholipid vesicles of defined composition, the two enzymes were found to hydrolyze all three of the phosphoinositides. Hydrolysis of all three phosphoinositides by both enzymes was stimulated by Ca2+; however, in the presence of EGTA only the polyphosphoinositides were hydrolyzed. The two enzymes displayed substrate affinities in the order PI greater than PI-4-P greater than PI-4,5-P2, and maximum hydrolysis rates in the order PI-4,5-P2 greater than PI-4-P greater than PI. When present in the same vesicles, PI and the polyphosphoinositides competed for a limiting amount of either enzyme. Inclusion of phosphatidylcholine into vesicles containing the phosphoinositides resulted in greater inhibition of PI hydrolysis than polyphosphoinositide hydrolysis. When all three phosphoinositides were present in vesicles mimicking the cytoplasmic leaflet of cell membranes, there was preferential hydrolysis of the polyphosphoinositides over PI. We conclude that a single phospholipase C can account for the hydrolysis of all three phosphoinositides seen during agonist-induced stimulation of secretory cells. The cytoplasmic Ca2+ concentration and phospholipid composition of the membrane, however, may influence the relative rate of hydrolysis of the three phosphoinositides.  相似文献   

16.
Human activities often impact the sensory environment of organisms. Wind energy turbines are a fast-growing potential source of anthropogenic vibrational noise that can affect soil animals sensitive to vibrations and thereby alter soil community functioning. Larger soil animals, such as earthworms (macrofauna, > 1 cm in size), are particularly likely to be impacted by the low-frequency turbine waves that can travel through soils over large distances. Here we examine the effect of wind turbine-induced vibrational noise on the abundance of soil animals. We measured vibrational noise generated by seven different turbines located in organically-farmed crop fields in the Netherlands. Vibratory noise levels dropped by an average of 23 ± 7 dB over a distance of 200 m away from the wind turbines. Earthworm abundance showed a strong decrease with increasing vibratory noise. When comparing the nearest sampling points in proximity of the wind energy turbines with the points furthest away, abundance dropped on average by 40% across all seven fields. The abundance of small-sized soil animals (mesofauna, < 10 mm in size) differed between crop fields, but was not related to local noise levels. Our results suggest that anthropogenic vibratory noise levels can impact larger soil fauna, which has important consequences for soil functioning. Earthworms, for instance, are considered to be crucial ecosystem engineers and an impact on their abundance, survival and reproduction may have knock-on effects on important processes such as water filtration, nutrient cycling and carbon sequestration.  相似文献   

17.
Golgi membrane vesicles can be easily and very rapidly (within 10 min.) loaded with solutions of desired composition by centrifugation of the vesicles at high g force in an air-driven ultracentrifuge and subsequent resuspension of the vesicle pellet. This centrifugal/mechanical loading procedure does not destroy the integrity of these vesicles, as demonstrated by the ability of loaded vesicles to (i) retain their contents, (ii) maintain a K+ gradient when loaded with K+ ions, and (iii) exchange internal UMP for external [3H]UMP when loaded with UMP. When radiolabeled solutes are loaded into vesicles, the displaced internal volume can be measured using a rapid filtration assay. This simple and rapid technique of replacing the intravesicular contents of Golgi membrane vesicles should prove useful in studying transport across this membrane and may have a variety of other applications, such as intravesicular volume measurements, macromolecule and drug delivery protocols, and the study of membrane fusion events.  相似文献   

18.
Target‐derived neurotrophins signal from nerve endings to the cell body to influence cellular and nuclear responses. The retrograde signal is conveyed by neurotrophin receptors (Trks) themselves. To accomplish this, activated Trks may physically relocalize from nerve endings to the cell bodies. However, alternative signaling mechanisms may also be used. To identify the vehicle wherein the activated Trks are located and transported, and to identify associated motor proteins that would facilitate transport, we use activation‐state specific antibodies in concert with immunoelectron microscopy and deconvolution microscopy. We show that the activated Trks within rat sciatic nerve axons are preferentially localized to coated and uncoated vesicles. These vesicles are moving in a retrograde direction and so accumulate distal to a ligation site. The P‐Trk containing vesicles, in turn, colocalize with dynein components, and not with kinesins. Collectively, these results indicate activated Trk within axons travel in vesicles and dynein is the motor that drives these vesicles towards the cell bodies. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 302–312, 2002  相似文献   

19.
Phosphorylation of brain synaptic and coated vesicle proteins was stimulated by Ca2+ and calmodulin. As determined by 5-15% sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE), molecular weights (Mr) of the major phosphorylated proteins were 55,000 and 53,000 in synaptic vesicles and 175,000 and 55,000 in coated vesicles. In synaptic vesicles, phosphorylation was inhibited by affinity-purified antibodies raised against a 30,000 Mr protein doublet endogenous to synaptic and coated vesicles. When this doublet, along with clathrin, was extracted from coated vesicles, phosphorylation did not take place, implying that the protein doublet may be closely associated with Ca2+/calmodulin-dependent protein kinase. Affinity-purified antibodies, raised against clathrin used as a control antibody, failed to inhibit Ca2+/calmodulin-dependent phosphorylation in either synaptic or coated vesicles. Immunoelectron cytochemistry revealed that this protein doublet was present in axon terminal synaptic and coated vesicles. Synaptic vesicles also displayed cAMP-dependent kinase activity; coated vesicles did not. The molecular weights of phosphorylated synaptic vesicle proteins in the presence of Mg2+ and cAMP were: 175,000, 100,000, 80,000, 57,000, 55,000, 53,000, 40,000, and 30,000. Based on the different phosphorylation patterns observed in synaptic and coated vesicles, we propose that brain vesicle protein kinase activities may be involved in the regulation of exocytosis and in retrieval of synaptic membrane in presynaptic axon terminals.  相似文献   

20.
Cytochrome b5 is an amphipathic integral membrane protein that spontaneously inserts, post-translationally, into intracellular membranes. When added to preformed phospholipid vesicles, it binds in a so-called "loose" or transferable configuration, characterized by the ability of the protein to rapidly equilibrate between vesicles. In a preliminary report we showed that the distribution of cytochrome b5 among a heterogeneous population of small sonicated phosphatidylcholine vesicles (212 to about 350 A in diameter) lies in favor of the smallest vesicles by a factor of at least 20 (Greenhut, S.F. and Roseman, M.A. (1985) J. Biol. Chem. 260, 5883-5886). In the present studies we have attempted to determine the maximal extent to which bilayer curvature can influence the intervesicle distribution of cytochrome b5, by measuring the distribution of the protein between a population of limit-size vesicles 212 A in diameter and a population of large unilamellar vesicles approximately 1000 A in diameter. (The effect of bilayer curvature on the physical properties of the lipids in the large vesicles is considered to be negligible.) The results show that cytochrome b5 favors the small vesicle population by a factor of about 200. This observation suggests that the formation of highly curved regions in biological membranes (or the formation of regions in which the physical state of the lipids is similar to that in small vesicles) may cause the accumulation of certain membrane proteins at those sites. We also observed that a significant fraction (11-20%) of the cytochrome b5, when added directly to the large vesicles, spontaneously inserts into the "tight," physiologically proper configuration. A possible mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号