共查询到20条相似文献,搜索用时 15 毫秒
1.
Bronner-Fraser M 《Trends in cell biology》1993,3(11):392-397
In vertebrate embryos, neural crest cells migrate extensively to defined sites where they differentiate into a complex array of derivatives, ranging from neurons to pigment cells. Neural crest cells emerge uniformly from the neural tube but their subsequent migratory pattern is segmented along much of the body axis. What factors control this segmental migration? At trunk levels, it is imposed by the intrinsic segmentation of the neighbouring somitic mesoderm, while in the head, intrinsic information within the neural tube as well as extrinsic influences from the ectoderm are involved. A variety of cell-cell and cell-extracellular matrix interactions are thought to influence initiation and movement of neural crest cells. This review summarizes recent progress from both experimental embryology and cell biology approaches in uncovering the mechanisms underlying neural crest cell migration. 相似文献
2.
Neural crest cell migration: requirements for exogenous fibronectin and high cell density 总被引:4,自引:17,他引:4 下载免费PDF全文
R A Rovasio A Delouvee K M Yamada R Timpl J P Thiery 《The Journal of cell biology》1983,96(2):462-473
Cells of the neural crest participate in a major class of cell migratory events during embryonic development. From indirect evidence, it has been suggested that fibronectin (FN) might be involved in these events. We have directly tested the role of FN in neural crest cell adhesion and migration using several in vitro model systems. Avian trunk neural crest cells adhered readily to purified plasma FN substrates and to extracellular matrices containing cellular FN. Their adhesion was inhibited by antibodies to a cell-binding fragment of FN. In contrast, these cells did not adhere to glass, type I collagen, or to bovine serum albumin in the absence of FN. Neural crest cell adhesion to laminin (LN) was significantly less than to FN; however, culturing of crest cells under conditions producing an epithelioid phenotype resulted in cells that could bind equally as well to LN as to FN. The migration of neural crest cells appeared to depend on both the substrate and the extent of cell interactions. Cells migrated substantially more rapidly on FN than on LN or type I collagen substrates; if provided a choice between stripes of FN and glass or LN, cells migrated preferentially on the FN. Migration was inhibited by antibodies against the cell-binding region of FN, and the inhibition could be reversed by a subsequent addition of exogenous FN. However, the migration on FN was random and displayed little persistence of direction unless cells were at high densities that permitted frequent contacts. The in vitro rate of migration of cells on FN-containing matrices was 50 microns/h, similar to their migration rates along the narrow regions of FN-containing extracellular matrix in migratory pathways in vivo. These results indicate that FN is important for neural crest cell adhesion and migration and that the high cell densities of neural crest cells in the transient, narrow migratory pathways found in the embryo are necessary for effective directional migration. 相似文献
3.
The development of the neural crest up to the stage where they leave the neural tube can be observed as a series of concatenated but independent events that involve dorsalization of the neural plate/neural tube, neural crest induction, segregation and stabilization, epithelial to mesenchymal transition and delamination. During all these processes, the nascent neural crest cells are subjected to the influence of different signals and have to overcome competition for cell fate and apoptotic signals. In addition, striking rostrocaudal differences unveil how the regulatory cascades are somehow different but still can lead to the production of bona fide neural crest cells. 相似文献
4.
Rinon A Molchadsky A Nathan E Yovel G Rotter V Sarig R Tzahor E 《Development (Cambridge, England)》2011,138(9):1827-1838
Neural crest development involves epithelial-mesenchymal transition (EMT), during which epithelial cells are converted into individual migratory cells. Notably, the same signaling pathways regulate EMT function during both development and tumor metastasis. p53 plays multiple roles in the prevention of tumor development; however, its precise roles during embryogenesis are less clear. We have investigated the role of p53 in early cranial neural crest (CNC) development in chick and mouse embryos. In the mouse, p53 knockout embryos displayed broad craniofacial defects in skeletal, neuronal and muscle tissues. In the chick, p53 is expressed in CNC progenitors and its expression decreases with their delamination from the neural tube. Stabilization of p53 protein using a pharmacological inhibitor of its negative regulator, MDM2, resulted in reduced SNAIL2 (SLUG) and ETS1 expression, fewer migrating CNC cells and in craniofacial defects. By contrast, electroporation of a dominant-negative p53 construct increased PAX7(+) SOX9(+) CNC progenitors and EMT/delamination of CNC from the neural tube, although the migration of these cells to the periphery was impaired. Investigating the underlying molecular mechanisms revealed that p53 coordinates CNC cell growth and EMT/delamination processes by affecting cell cycle gene expression and proliferation at discrete developmental stages; disruption of these processes can lead to craniofacial defects. 相似文献
5.
Neural crest migration: Patterns, phases and signals 总被引:1,自引:0,他引:1
6.
7.
8.
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration. 相似文献
9.
Temporal and regional aspects of early neural crest cell migration in relation to extracellular matrix (ECM) organization and distribution in the embryonic axolotl trunk were studied by light microscopy, TEM, and SEM. The dominating structure of the interstitial ECM is a complex network of fibrils, which are indicated by ruthenium red staining to consist of collagen in association with ruthenium red-positive components, probably including glycosaminoglycans. The ECM fibrils, which are largely used as substratum for locomotion by the crest cells, have a temporally and regionally specific organization and distribution. Increase in ECM fibrils on the neural tube, ahead of the crest cell front, is correlated with initiation of crest cell emigration, and it is suggested that the fibrils may stimulate this process by providing a suitable substratum for cell locomotion. An increase in ECM fibrils in extracellular spaces surrounding the crest cell population is correlated with an expansion of these spaces and with progressing crest cell migration into them. It is proposed that the spatial organization of the ECM fibrils influences crest cell shape and orientation during early migration. 相似文献
10.
11.
Association between the cell cycle and neural crest delamination through specific regulation of G1/S transition 总被引:1,自引:0,他引:1
Delamination of premigratory neural crest cells from the dorsal neural tube depends both upon environmental signals and cell-intrinsic mechanisms and is a prerequisite for cells to engage in migration. Here we show that avian neural crest cells synchronously emigrate from the neural tube in the S phase of the cell cycle. Furthermore, specific inhibition of the transition from G1 to S both in ovo and in explants blocks delamination, whereas arrest at the S or G2 phases has no immediate effect. Thus, the events taking place during G1 that control the transition from G1 to S are necessary for the epithelial to mesenchymal conversion of crest precursors. 相似文献
12.
Long standing research of the Neural Crest embodies the most fundamental questions of Developmental Biology. Understanding the mechanisms responsible for specification, delamination, migration and phenotypic differentiation of this highly diversifying group of progenitors has been a challenge for many researchers over the years and continues to attract newcomers into the field. Only a few leaps were more significant than the discovery and successful exploitation of the quail-chick model by Nicole Le Douarin and colleagues from the Institute of Embryology at Nogent-sur-Marne. The accurate fate mapping of the neural crest performed at virtually all axial levels was followed by the determination of its developmental potentialities as initially analysed at a population level and then followed by many other significant findings. Altogether, these results paved the way to innumerable questions which brought us from an organismic view to mechanistic approaches. Among them, elucidation of functions played by identified genes is now rapidly underway. Emerging results lead the way back to an integrated understanding of the nature of interactions between the developing neural crest and neighbouring structures. The Nogent Institute thus performed an authentic "tour de force" in bringing the Neural Crest to the forefront of Developmental Biology. The present review is dedicated to the pivotal contributions of Nicole Le Douarin and her collaborators and to unforgettable memories that one of the authors bears from the time spent in the Nogent Institute. We summarize here recent advances in our understanding of early stages of crest ontogeny that comprise specification of epithelial progenitors to a neural crest fate and the onset of neural crest migration. Particular emphasis is given to signaling by BMP and Wnt molecules, to the role of the cell cycle in generating cell movement and to possible interactions between both mechanisms. 相似文献
13.
Neural crest cells (NCCs) are a remarkable, dynamic group of cells that travel long distances in the embryo to reach their target sites. They are responsible for the formation of craniofacial bones and cartilage, neurons and glia in the peripheral nervous system and pigment cells. Live imaging of NCCs as they traverse the embryo has been critical to increasing our knowledge of their biology. NCCs exhibit multiple behaviors and communicate with each other and their environment along each step of their journey. Imaging combined with molecular manipulations has led to insights into the mechanisms controlling these behaviors. In this Review, we highlight studies that have used live imaging to provide novel insight into NCC migration and discuss how continued use of such techniques can advance our understanding of NCC biology.Key words: live imaging, neural crest, EMT, Rho GTPase, ephrin, PCP signaling, cadherin, VEGFNeural crest cells (NCCs) are a pluripotent population of cells that migrate from the dorsal neuroepithelium and give rise to multiple cell types including neurons and glia of the peripheral nervous system, pigment cells and craniofacial bone and cartilage.1 An important hallmark of NCCs is their remarkable ability to migrate over long distances and along specific pathways through the embryo. NCC migration begins with an epithelial to mesenchymal transition (EMT), in which NCCs lose adhesions with their neighbors and segregate from the neuroepithelium.2,3 Following EMT, NCCs acquire a polarized morphology and initiate directed migration away from the neural tube. While migrating along their pathways to their target tissues, NCCs are guided by extensive communication with one another and by other cues from the extracellular environment. Each of these aspects of NCC migration requires precise regulation of cell motile behaviors, although the mechanisms controlling them are still not well understood. A critical step toward understanding the molecular control of NCC motility is characterization of NCC behaviors as they migrate in their native environment. In the past 15 years, multiple studies have analyzed specific behaviors associated with NCCs along the various stages of their journey and have begun to identify molecules controlling these behaviors. In this review we will focus specifically on these studies that employ live imaging and will highlight the strength of live imaging to reveal mechanisms regulating NCC motility and migration pathways. 相似文献
14.
Marianne Bronner-Fraser 《BioEssays : news and reviews in molecular, cellular and developmental biology》1993,15(4):221-230
Neural crest cells are remarkable in their extensive and stereotypic patterns of migration. The pathways of neural crest migration have been documented by cell marking techniques, including interspecific neural tube grafts, immunocytochemistry and Dil-labelling. In the trunk, neural crest cells migrate dorsally under the skin or ventrally through the somites, where they move in a segmental fashion through the rostral half of each sclerotome. The segmental migration of neural crest cells appears to be prescribed by the somites, perhaps by an inhibitory cue from the caudal half. Within the rostral sclerotome, neural crest cells fill the available space except for a region around the notochord, suggesting the notochord may inhibit neural crest cells in its vicinity. In the cranial region, antibody perturbation experiments suggest that multiple cell-matrix interactions are required for proper in vivo migration of neural crest cells. Neural crest cells utilize integrin receptors to bind to a number of extracellular matrix molecules. Substrate selective inhibition of neural crest cell attachment in vitro by integrin antibodies and antisense oligonucleotides has demonstrated that they possess at least three integrins, one being an α1β1 integrin which functions in the absence of divalent cations. Thus, neural crest cells utilize complex sets of interactions which may differ at different axial levels. 相似文献
15.
Neural crest cell plasticity and its limits 总被引:12,自引:0,他引:12
The neural crest (NC) yields pluripotent cells endowed with migratory properties. They give rise to neurons, glia, melanocytes and endocrine cells, and to diverse 'mesenchymal' derivatives. Experiments in avian embryos have revealed that the differentiation of the NC 'neural' precursors is strongly influenced by environmental cues. The reversibility of differentiated cells (such as melanocytes or glia) to a pluripotent precursor state can even be induced in vitro by a cytokine, endothelin 3. The fate of 'mesenchymal' NC precursors is strongly restricted by Hox gene expression. In this context, however, facial skeleton morphogenesis is under the control of a multistep crosstalk between the epithelia (endoderm and ectoderm) and NC cells. 相似文献
16.
Sepideh Bazazi Pawel Romanczuk Sian Thomas Lutz Schimansky-Geier Joseph J. Hale Gabriel A. Miller Gregory A. Sword Stephen J. Simpson Iain D. Couzin 《Proceedings. Biological sciences / The Royal Society》2011,278(1704):356-363
In order to move effectively in unpredictable or heterogeneous environments animals must make appropriate decisions in response to internal and external cues. Identifying the link between these components remains a challenge for movement ecology and is important in understanding the mechanisms driving both individual and collective motion. One accessible way of examining how internal state influences an individual''s motion is to consider the nutritional state of an animal. Our experimental results reveal that nutritional state exerts a relatively minor influence on the motion of isolated individuals, but large group-level differences emerge from diet affecting inter-individual interactions. This supports the idea that mass movement in locusts may be driven by cannibalism. To estimate how these findings are likely to impact collective migration of locust hopper bands, we create an experimentally parametrized model of locust interactions and motion. Our model supports our hypothesis that nutrient-dependent social interactions can lead to the collective motion seen in our experiments and predicts a transition in the mean speed and the degree of coordination of bands with increasing insect density. Furthermore, increasing the interaction strength (representing greater protein deprivation) dramatically reduces the critical density at which this transition occurs, demonstrating that individuals'' nutritional state could have a major impact on large-scale migration. 相似文献
17.
18.
Collective cell migration is crucial to maintain epithelium integrity during developmental and repair processes. It requires a tight regulation of mechanical coordination between neighboring cells. This coordination embraces different features including mechanical self-propulsion of individual cells within cellular colonies and large-scale force transmission through cell–cell junctions. This review discusses how the plasticity of biomechanical interactions at cell–cell contacts could help cellular systems to perform coordinated motions and adapt to the properties of the external environment. 相似文献
19.
20.
During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems. 相似文献