首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A variety of stress signals stimulate cardiac myocytes to undergo hypertrophy. Persistent cardiac hypertrophy is associated with elevated risk for the development of heart failure. Recently, we showed that class II histone deacetylases (HDACs) suppress cardiac hypertrophy and that stress signals neutralize this repressive function by triggering phosphorylation- and CRM1-dependent nuclear export of these chromatin-modifying enzymes. However, the identities of cardiac HDAC kinases have remained unclear. Here, we demonstrate that signaling by protein kinase C (PKC) is sufficient and, in some cases, necessary to drive nuclear export of class II HDAC5 in cardiomyocytes. Inhibition of PKC prevents nucleocytoplasmic shuttling of HDAC5 in response to a subset of hypertrophic agonists. Moreover, a nonphosphorylatable HDAC5 mutant is refractory to PKC signaling and blocks cardiomyocyte hypertrophy mediated by pharmacological activators of PKC. We also demonstrate that protein kinase D (PKD), a downstream effector of PKC, directly phosphorylates HDAC5 and stimulates its nuclear export. These findings reveal a novel function for the PKC/PKD axis in coupling extracellular cues to chromatin modifications that control cellular growth, and they suggest potential utility for small-molecule inhibitors of this pathway in the treatment of pathological cardiac gene expression.  相似文献   

4.
5.
Although the function of protein kinase D1 (PKD) in cardiac cells has remained enigmatic, recent work has shown that PKD phosphorylates the nuclear regulators HDAC5/7 (histone deacetylase 5/7) and CREB, implicating this kinase in the development of dysfunction seen in heart failure. Additional studies have shown that PKD also phosphorylates multiple sarcomeric substrates to regulate myofilament function. Initial studies examined PKD through adenoviral vector expression of wild type PKD, constitutively active PKD (caPKD), or dominant negative PKD in cultured adult rat ventricular myocytes. Confocal immunofluorescent images of these cells reveal a predominant distribution of all PKD forms in a non-nuclear, Z-line localized, striated reticular pattern, suggesting the importance of PKD in Ca(2+) signaling in heart. Consistent with an established role of PKD in targeting cardiac troponin I (cTnI), caPKD expression led to a marked decrease in contractile myofilament Ca(2+) sensitivity with an unexpected electrical stimulus dependence to this response. This desensitization was accompanied by stimulus-dependent increases in cTnI phosphorylation in control and caPKD cells with a more pronounced effect in the latter. Electrical stimulation also provoked phosphorylation of regulatory site Ser(916) on PKD. The functional importance of this phospho-Ser(916) event is demonstrated in experiments with a phosphorylation-defective mutant, caPKD-S916A, which is functionally inactive and blocks stimulus-dependent increases in cTnI phosphorylation. Dominant negative PKD expression resulted in sensitization of the myofilaments to Ca(2+) and blocked stimulus-dependent increases in cTnI phosphorylation. Taken together, these data reveal that localized PKD may play a role as a dynamic regulator of Ca(2+) sensitivity of contraction in cardiac myocytes.  相似文献   

6.
We have taken a knockout approach to interrogate the function of protein kinase D (PKD) serine/threonine kinases in lymphocytes. DT40 B cells express two PKD family members, PKD1 and PKD3, which are both rapidly activated by the B-cell antigen receptor (BCR). DT40 cells with single or dual deletions of PKD1 and/or PKD3 were viable, allowing the role of individual PKD isoforms in BCR signal transduction to be assessed. One proposed downstream target for PKD1 in lymphocytes is the class II histone deacetylases (HDACs). Regulation of chromatin accessibility via class II histone deacetylases is an important mechanism controlling gene expression patterns, but the molecules that control this key process in B cells are not known. Herein, we show that phosphorylation and nuclear export of the class II histone deacetylases HDAC5 and HDAC7 are rapidly induced following ligation of the BCR or after treatment with phorbol esters (a diacylglycerol mimetic). Loss of either PKD1 or PKD3 had no impact on HDAC phosphorylation, but loss of both PKD1 and PKD3 abrogated antigen receptor-induced class II HDAC5/7 phosphorylation and nuclear export. These studies reveal an essential and redundant role for PKD enzymes in controlling class II HDACs in B lymphocytes and suggest that PKD serine kinases are a critical link between the BCR and epigenetic control of chromatin.  相似文献   

7.
In the adult heart, a variety of stresses induce re-expression of a fetal gene program in association with myocyte hypertrophy and heart failure. Here we show that histone deacetylase-2 (Hdac2) regulates expression of many fetal cardiac isoforms. Hdac2 deficiency or chemical histone deacetylase (HDAC) inhibition prevented the re-expression of fetal genes and attenuated cardiac hypertrophy in hearts exposed to hypertrophic stimuli. Resistance to hypertrophy was associated with increased expression of the gene encoding inositol polyphosphate-5-phosphatase f (Inpp5f) resulting in constitutive activation of glycogen synthase kinase 3beta (Gsk3beta) via inactivation of thymoma viral proto-oncogene (Akt) and 3-phosphoinositide-dependent protein kinase-1 (Pdk1). In contrast, Hdac2 transgenic mice had augmented hypertrophy associated with inactivated Gsk3beta. Chemical inhibition of activated Gsk3beta allowed Hdac2-deficient adults to become sensitive to hypertrophic stimulation. These results suggest that Hdac2 is an important molecular target of HDAC inhibitors in the heart and that Hdac2 and Gsk3beta are components of a regulatory pathway providing an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.  相似文献   

8.
9.
10.
11.
12.
Postnatal cardiac myocytes respond to stress signals by hypertrophic growth and activation of a fetal gene program. Recently, we showed that class II histone deacetylases (HDACs) suppress cardiac hypertrophy, and mice lacking the class II HDAC, HDAC9, are sensitized to hypertrophic signals. To further define the roles of HDACs in cardiac hypertrophy, we analyzed the effects of HDAC inhibitors on the responsiveness of primary cardiomyocytes to hypertrophic agonists. Paradoxically, HDAC inhibitors imposed a dose-dependent blockade to hypertrophy and fetal gene activation. We conclude that distinct HDACs play positive or negative roles in the control of cardiomyocyte hypertrophy. HDAC inhibitors are currently being tested in clinical trials as anti-cancer agents. Our results suggest that these inhibitors may also hold promising clinical value as therapeutics for cardiac hypertrophy and heart failure.  相似文献   

13.
Signaling via pro-growth G protein coupled receptors triggers phosphorylation of HDAC5 on two serine residues (Ser259 and Ser498), resulting in nuclear export of HDAC5 and de-repression of downstream target genes. In the previous paper we reported the important role of PKD isozymes in the regulation of HDAC5 by phosphorylating Ser498 of HDAC5 [Q.K. Huynh, T.A. Mckinsey, Arch. Biochem. Biophys. 450 (2006) 141–148]. In the present paper, we provide evidence that PKCδ can directly phosphorylate Ser259 of HDAC5. The evidence is based on the following facts (a) isolated kinase fraction from human failing heart tissues contained PKCδ that phosphorylated HDAC5 Ser259 peptide and no significant activity was found for the unbound fraction after they were immunoprecipitated with PKCδ specific antibody; (b) specific inhibitors for PKCδ inhibited kinase activity from isolated fraction and recombinant human PKCδ with similar IC50 values; (c) recombinant human PKCδ can directly phosphorylate full length Ser259 HDAC5 protein and HDAC5 Ser259 peptide. The results suggest that in addition to activation of protein kinase D isozymes by phosphorylating Ser744 and Ser748 at their activation sites, PKCδ may also play a role in the regulation of HDAC5 by phosphorylation of Ser259.  相似文献   

14.
15.
16.
17.
Sodium butyrate (NaBu) is reported to play important roles in a number of chronic diseases. The present work is aimed to investigate the effect of NaBu on angiotensin II (Ang II)‐induced cardiac hypertrophy and the underlying mechanism in in vivo and in vitro models. Sprague Dawley rats were infused with vehicle or Ang II (200 ng/kg/min) and orally administrated with or without NaBu (1 g/kg/d) for two weeks. Cardiac hypertrophy parameters and COX2/PGE2 pathway were analysed by real‐time PCR, ELISA, immunostaining and Western blot. The cardiomyocytes H9C2 cells were used as in vitro model to investigate the role of NaBu (2 mmol/L) in inhibition of Ang II‐induced cardiac hypertrophy. NaBu significantly attenuated Ang II‐induced increase in the mean arterial pressure. Ang II treatment remarkably increased cardiac hypertrophy as indicated by increased ratio of heart weight/body weight and enlarged cardiomyocyte size, extensive fibrosis and inflammation, as well as enhanced expression of hypertrophic markers, whereas hearts from NaBu‐treated rats exhibited a significant reduction in these hypertrophic responses. Mechanistically, NaBu inhibited the expression of COX2/PGE2 along with production of ANP and phosphorylated ERK (pERK) stimulated by Ang II in in vivo and in vitro, which was accompanied by the suppression of HDAC5 and HDAC6 activities. Additionally, knocking down the expression of HDAC5 and HDAC6 via gene‐editing strategy dramatically blocked Ang II‐induced hypertrophic responses through COX2/PGE2 pathway. These results provide solid evidence that NaBu attenuates Ang II‐induced cardiac hypertrophy by inhibiting the activation of COX2/PGE2 pathway in a HDAC5/HDAC6‐dependent manner.  相似文献   

18.
19.
The negative regulation of expression of genes involved in various metabolic pathways in a skeletal muscle is the main function of histone deacetylases 4 and 5 (HDAC4/HDAC5). HDAC4 and HDAC5 seem to be the targets of the AMP-activated protein kinase (AMPK). Earlier, an essential decrease in the level of Thr172-phosphorylated-AMPK in a rat soleus muscle at the first day of gravitational unloading was shown. Possibility of a protein kinase D (PKD) to phosphorylate histone deacetylases 4/5 has been shown, too. We supposed that under the conditions of gravitational unloading, alterations in AMPK phosphorylation level can affect regulation of nuclear-cytoplasmic traffic of class II histone deacetylases and of various skeletal muscle genes expression. To verify the hypothesis, we used administration of an AMPK activator, AICAR, before and during a day-long hindlimb suspension. It was shown that at an early stage of gravitational unloading, HDAC4 is not a PKD target, and its nuclear import is realized due to decrease in AMPK activity. We were the first to show reciprocal relations between AMPK and PKD in a skeletal muscle at early gravitational unloading.  相似文献   

20.
The synthesis and preliminary studies of the SAR of novel 3,5-diarylazole inhibitors of Protein Kinase D (PKD) are reported. Notably, optimized compounds in this class have been found to be active in cellular assays of phosphorylation-dependant HDAC5 nuclear export, orally bioavailable, and highly selective versus a panel of additional putative histone deacetylase (HDAC) kinases. Therefore these compounds could provide attractive tools for the further study of PKD / HDAC5 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号