首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Fernandes MS  Brosens JJ  Gellersen B 《Steroids》2008,73(9-10):942-952
The recent discovery of three closely related cell surface receptors that bind to progesterone and mediate its actions on various cytoplasmic signalling cascades has been heralded as a major break-through. The reason for this is all too obvious. Progesterone is an essential regulator of all major reproductive events and progestins and antiprogestins are widely used in the treatment of many different gynaecological and obstetrical disorders. The novel membrane progestin receptors (mPRalpha, beta, gamma) reportedly resemble and function as G-protein-coupled receptors and therefore are promising pharmaceutical targets. However, our studies failed to corroborate that mPRs are expressed on the cell surface, that they mediate rapid progesterone signalling events, and even that they are bona fide progestin binding moieties. While the reason for these startling opposing results remains unclear, a critical review of existing data may help to shed some light onto the controversial mPRs. Time has come to talk.  相似文献   

4.
Pang Y  Thomas P 《Steroids》2011,76(9):921-928
The functional characteristics of membrane progesterone receptors (mPRs) have been investigated using recombinant mPR proteins over-expressed in MDA-MB-231 breast cancer cells. Although these cells do not express the full-length progesterone receptor (PR), it is not known whether they express N-terminally truncated PR isoforms which could possibly account for some progesterone receptor functions attributed to mPRs. In the present study, the presence of N-terminally truncated PR isoforms was investigated in untransfected and mPR-transfected MDA-MB-231 cells, and in MDA-MB-468 breast cancer cells. PCR products were detected in PR-positive T47D Yb breast cancer cells using two sets of C-terminus PR primers, but not in untransfected and mPR-transfected MDA-MB-231 cells, nor in MDA-MB-468 cells. Western blot analysis using a C-terminal PR antibody, 2C11F1, showed the same distribution pattern for PR in these cell lines. Another C-terminal PR antibody, C-19, detected immunoreactive bands in all the cell lines, but also recognized α-actinin, indicating that the antibody is not specific for PR. High affinity progesterone receptor binding was identified on plasma membranes of MDA-MB-468 cells which was significantly decreased after treatment with siRNAs for mPRα and mPRβ. Plasma membranes of MDA-MB-468 cells showed very low binding affinity for the PR agonist, R5020, ≤1% that of progesterone, which is characteristic of mPRs. Progesterone treatment caused G protein activation and decreased production of cAMP in MDA-MB-468 cells, which is also characteristic of mPRs. The results indicate that the progestin receptor functions in these cell lines are mediated through mPRs and do not involve any N-terminally truncated PR isoforms.  相似文献   

5.
6.
ABSTRACT: BACKGROUND: Adaptive responses in fungi result from the interaction of membrane receptors and extracellular ligands. Many different classes of receptors have been described in eukaryotic cells. Recently a new family of receptors classified as belonging to the progesterone-adiponectin receptor (PAQR) family has been identified. These receptors have the seven transmembrane domains characteristic of G-protein coupled receptors, but their activity has not been associated directly to G proteins. They share sequence similarity to the eubacterial hemolysin III proteins. RESULTS: A new receptor, SsPAQR1 (Sporothrix schenckii progesterone-adiponectinQ receptor1), was identified as interacting with Sporothrix schenckii G protein alpha subunit SSG-2 in a yeast two-hybrid assay. The receptor was identified as a member of the PAQR family. The cDNA sequence revealed a predicted ORF of 1542 bp encoding a 514 amino acids protein with a calculated molecular weight of 57.8 kDa. Protein domain analysis of SsPAQR1 showed the 7 transmembrane domains (TM) characteristic of G protein coupled receptors and the presence of the distinctive motifs that characterize PAQRs. A yeast-based assay specific for PAQRs identified progesterone as the agonist. S. schenckii yeast cells exposed to progesterone (0.50 mM) showed an increase in intracellular levels of 3[PRIME], 5[PRIME] cyclic adenosine monophosphate (cAMP) within the first min of incubation with the hormone. Different progesterone concentrations were tested for their effect on the growth of the fungus. Cultures incubated at 35[DEGREE SIGN]C did not grow at concentrations of progesterone of 0.05 mM or higher. Cultures incubated at 25[DEGREE SIGN]C grew at all concentrations tested (0.01 mM-0.50 mM) with growth decreasing gradually with the increase in progesterone concentration. CONCLUSION: This work describes a receptor associated with a G protein alpha subunit in S. schenckii belonging to the PAQR family. Progesterone was identified as the ligand. Exposure to progesterone increased the levels of cAMP in fungal yeast cells within the first min of incubation suggesting the connection of this receptor to the cAMP signalling pathway. Progesterone inhibited the growth of both the yeast and mycelium forms of the fungus, with the yeast form being the most affected by the hormone.  相似文献   

7.
Progestin withdrawal is a crucial event for the onset of labor in many mammalian species. However, in humans the mechanism of a functional progestin withdrawal is unclear, because progestin concentrations do not drop in maternal plasma preceding labor. We report the presence of two novel functional membrane progestin receptors (mPRs), mPRalpha and mPRbeta, in human myometrium that are differentially modulated during labor and by steroids in vitro. The mPRs are coupled to inhibitory G proteins, resulting in a decline in cAMP levels and increased phosphorylation of myosin light chain, both of which facilitate myometrial contraction. Activation of mPRs leads to transactivation of PR-B, the first evidence for cross-talk between membrane and nuclear PRs. Progesterone activation of the mPRs leads also to a decrease of the steroid receptor coactivator 2. Our data indicate the presence of a novel signaling pathway mediated by mPRs that may result in a functional progestin withdrawal, shifting the balance from a quiescent state to one of contraction.  相似文献   

8.
A novel seven-transmembrane receptor family, that is comprised of human adiponectin receptors (AdipoRs) and membrane progestin receptors (mPRs) that share little sequence homology with all known G protein-coupled receptors (GPCRs), has been identified recently. Although a fish mPR has been suggested to be a GPCR, human AdipoRs seem to be structurally and functionally distinct from all known GPCRs. The identification of a novel gene family, the heptahelical protein (HHP) gene family, encoding proteins in Arabidopsis predicted to have a heptahelical transmembrane topology is reported here. There are at least five HHP genes in Arabidopsis whose encoded amino acid sequences have significant similarities to human AdipoRs and mPRs.The expression and regulation of the Arabidopsis HHP gene family has been studied here. The expression of the HHP gene family is differentially regulated by plant hormones. Steady-state levels of HHP1 mRNA are increased by treatments with abscisic acid and gibberellic acid, whereas levels of HHP2 mRNA are increased by abscisic acid and benzyladenine treatments. In addition, the expression of the HHP gene family is up-regulated by the presence of sucrose in the medium. Temperature and salt stress treatments also differentially affect the expression of the HHP genes. These novel seven-transmembrane proteins previously described in yeast and animals, and now identified in plants, may represent a new class of receptors that are highly conserved across kingdoms.  相似文献   

9.
Abstract

G protein-coupled receptors (GPCRs) represent the largest group of cell surface receptors and an important pharmacological target. Though originally thought to act in a one receptor–one effector fashion, it is now known that these receptors are capable of oligomerization and can function as dimers or higher order oligomers in native tissue. They do not only assemble with identical receptors as homodimers, but also associate with different GPCRs to form heterodimers. We discuss here how heterodimeric GPCRs can assemble, traffic and signal in a manner distinct from their individual receptor components or from homodimers. These receptor pairs are also demonstrated to be regulated by different chaperones, Rabs and scaffolding proteins, further emphasizing their potential as unique targets. We believe in the importance of investigating each GPCR heterodimer as an individual signaling complex, as they appear to act differently from each monomer constituting them. Just as teenagers may resemble their parents and share their genetic makeup, they can still act in a manner that is entirely unique!  相似文献   

10.
We have identified eleven novel aminergic-like G-protein coupled receptor (GPCRs) sequences (named AmphiAmR1-11) by searching the genomic trace sequence database for the amphioxus species, Branchiostoma floridae. They share many of the structural motifs that have been used to characterize vertebrate and invertebrate aminergic GPCRs. A preliminary classification of these receptors has been carried out using both BLAST and Hidden Markov Model analyses. The amphioxus genome appears to express a number of D1-like dopamine receptor sequences, including one related to insect dopamine receptors. It also expresses a number of receptors that resemble invertebrate octopamine/tyramine receptors and others that resemble vertebrate alpha-adrenergic receptors. Amphioxus also expresses receptors that resemble vertebrate histamine receptors. Several of the novel receptor sequences have been identified in amphioxus cDNA libraries from a number of tissues.  相似文献   

11.
12.
孕激素和脂联素分子受体家族(PAQRs)是一类不同于G蛋白耦联受体家族的7次跨膜蛋白家族,目前发现该家族在人类具有11个成员。这类蛋白的结构类似于细菌的溶血素蛋白III,跨膜区域完全由一个高度保守的PFAM-UPF0073结构域构成。对该家族成员的生理功能研究发现,PAQR1,PAQR2具有维持代谢稳态和参与炎症反应的作用。PAQR5,PAQR7,PAQR8对于精子顶体反应,卵细胞的成熟和细胞凋亡有着重要的调节作用。随着对该家族成员分子的深入研究,一方面将更新对其现有生理病理过程的认识,另一方面将更加明确该类蛋白介导的信号转导通路,为相关疾病的治疗提供新的靶点和新的策略。  相似文献   

13.
14.
Lai JN  Wang OY  Lin VH  Liao CF  Tarng DC  Chien EJ 《Steroids》2012,77(10):1017-1024
Progesterone is an endogenous immunomodulator that is able to suppress T cell activation during pregnancy. An increased intracellular free calcium concentration ([Ca(2+)](i)), acidification, and an inhibition of Na(+)/H(+)-exchange 1 (NHE1) are associated with this progesterone rapid non-genomic response that involves plasma membrane sites. Such acidification, when induced by phytohemagglutinin, is calcium dependent in PKC down-regulated T cells. We investigated the relationship between this rapid response involving the [Ca(2+)](i) increase and various membrane progesterone receptors (mPRs). In addition, we explored whether the induction of acidification in T cells by progesterone is a direct result of the [Ca(2+)](i) increase. The results show that the intracellular calcium elevation caused by progesterone is inhibited by SKF96365, U73122, and 2-APB, but not by pertussis toxin or U73343. The elevation is enhanced by the protein tyrosine kinase inhibitor staurosporine and the protein kinase C inhibitors Ro318220 and Go6983. These findings suggest that progesterone does not stimulate the [Ca(2+)](i) increase via the Gi coupled mPR(α). Furthermore, progesterone-induced acidification was found to be dependent on Ca(2+) entry and blocked by the inorganic channel blocker, Ni(2+). However, BAPTA, an intracellular calcium chelator, was found to prevent progesterone-induced acidification but not the inhibition of NHE1. This implies that acidification by progesterone is a direct result of the [Ca(2+)](i) increase and does not directly involve NHE1. Taken together, further investigations are needed to explore whether one or more mPRs or PGRMC1 are involved in bringing about the T cell rapid response that results in the [Ca(2+)](i) increase and inhibition of NHE1.  相似文献   

15.
G protein-coupled receptors (GPCRs) represent the most important drug targets. Although the smallest functional unit of a GPCR is a monomer, it became clear in the past decades that the vast majority of the receptors form dimers. Only very recently, however, data were presented that some receptors may in fact be expressed as a mixture of monomers and dimers and that the interaction of the receptor protomers is dynamic. To date, equilibrium measurements were restricted to the plasma membrane due to experimental limitations. We have addressed the question as to where this equilibrium is established for the corticotropin-releasing factor receptor type 1. By developing a novel approach to analyze single molecule fluorescence cross-correlation spectroscopy data for intracellular membrane compartments, we show that the corticotropin-releasing factor receptor type 1 has a specific monomer/dimer equilibrium that is already established in the endoplasmic reticulum (ER). It remains constant at the plasma membrane even following receptor activation. Moreover, we demonstrate for seven additional GPCRs that they are expressed in specific but substantially different monomer/dimer ratios. Although it is well known that proteins may dimerize in the ER in principle, our data show that the ER is also able to establish the specific monomer/dimer ratios of GPCRs, which sheds new light on the functions of this compartment.  相似文献   

16.
17.
The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general.  相似文献   

18.
Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.  相似文献   

19.
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.  相似文献   

20.
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号