首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
vps33 mutants missort and secrete multiple vacuolar hydrolases and exhibit extreme defects in vacuolar morphology. Toward a molecular understanding of the role of the VPS33 gene in vacuole biogenesis, we have cloned this gene from a yeast genomic library by complementation of a temperature-sensitive vps33 mutation. Gene disruption demonstrated that VPS33 was not essential but was required for growth at high temperatures. At the permissive temperature, vps33 null mutants exhibited defects in vacuolar protein localization and vacuole morphology similar to those seen in most of the original mutant alleles. Sequence analysis revealed a putative open reading frame sufficient to encode a protein of 691 amino acids. Hydropathy analysis indicated that the deduced product of the VPS33 gene is generally hydrophilic, contains no obvious signal sequence or transmembrane domains, and is therefore unlikely to enter the secretory pathway. Polyclonal antisera raised against TrpE-Vps33 fusion proteins recognized a protein in yeast cells of the expected molecular weight, approximately 75,000. In cell fractionation studies, Vps33p behaved as a cytosolic protein. The predicted VPS33 gene product possessed sequence similarity with a number of ATPases and ATP-binding proteins specifically in their ATP-binding domains. One vps33 temperature-sensitive mutant contained a missense mutation near this region of sequence similarity; the mutation resulted in a Leu-646----Pro substitution in Vps33p. This temperature-sensitive mutant strain contained normal vacuoles at the permissive temperature but lacked vacuoles specifically in the bud at the nonpermissive temperature. Our data suggest that Vps33p acts in the cytoplasm to facilitate Golgi-to-vacuole protein delivery. We propose that as a consequence of the vps33 protein-sorting defects, abnormalities in vacuolar morphology and vacuole assembly result.  相似文献   

2.
The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Delta cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.  相似文献   

3.
Over 60 genes have been identified that affect protein sorting to the lysosome-like vacuole in Saccharomyces cerevisiae. Cells with mutations in these vacuolar protein sorting (vps) genes fall into seven general classes based upon their vacuolar morphology. Class A mutants have a morphologically wild type vacuole, while Class B mutants have a fragmented vacuole. There is no discernable vacuolar structure in Class C mutants. Class D mutants have a slightly enlarged vacuole, but Class E mutants have a normal looking vacuole with an enlarged prevacuolar compartment (PVC), which is analogous to the mammalian late endosome. Class F mutants have a wild type appearing vacuole as well as fragmented vacuolar structures. vps mutants have also been found with a tubulo-vesicular vacuole structure. vps mutant morphology is pertinent, as mutants of the same class may work together and/or have a block in the same general step in the vacuolar protein sorting pathway. We probed PVC morphology and location microscopically in live cells of several null vps mutants using a GFP fusion protein of Nhx1p, an Na(+)/H(+) exchanger normally localized to the PVC. We show that cell strains deleted for VPS proteins that have been previously shown to work together, regardless of VPS Class, have the same PVC morphology. Cell strains lacking VPS genes that have not been implicated in the same pathway show different PVC morphologies, even if the mutant strains are in the same VPS Class. These new studies indicate that PVC morphology is another tier of classification that may more accurately identify proteins that function together in vacuolar protein sorting than the original vps mutation classes.  相似文献   

4.
vps3 mutants of the yeast Saccharomyces cerevisiae are impaired in the sorting of newly synthesized soluble vacuolar proteins and in the acidification of the vacuole (Rothman, J. H., and T. H. Stevens. Cell. 47:1041-1051; Rothman, J. H., C. T. Yamashiro, C. K. Raymond, P. M. Kane, and T. H. Stevens. 1989. J. Cell Biol. 109:93-100). The VPS3 gene, which was cloned using a novel selection procedure, encodes a low abundance, hydrophilic protein of 117 kD that most likely resides in the cytoplasm. Yeast strains bearing a deletion of the VPS3 gene (vps3-delta 1) are viable, yet their growth rate is significantly reduced relative to wild-type cells. Temperature shift experiments with strains carrying a temperature conditional vps3 allele demonstrate that cells rapidly lose the capacity to sort the vacuolar protein carboxypeptidase Y upon loss of VPS3 function. Vacuolar morphology was examined in wild-type and vps3-delta 1 yeast strains by fluorescence microscopy. The vacuoles in wild-type yeast cells are morphologically complex, and they appear to be actively partitioned between mother cells and buds during an early phase of bud growth. Vacuolar morphology in vps3-delta 1 mutants is significantly altered from the wild-type pattern, and the vacuolar segregation process seen in wild-type strains is defective in these mutants. With the exception of a vacuolar acidification defect, the phenotypes of vps3-delta 1 strains are significantly different from those of mutants lacking the vacuolar proton-translocating ATPase. These data demonstrate that the acidification defect in vps3-delta 1 cells is not the primary cause of the pleiotropic defects in vacuolar function observed in these mutants.  相似文献   

5.
The effects of nystatin, a polyene antibiotic, was studied in Saccharomyces cerevisiae by isolating and characterizing nystatin-sensitive mutants. We isolated a number of nystatin-sensitive mutants by ethylmethane sulfonate mutagenesis. One of these mutants, the nss1 mutant, was characterized in detail. The mutant was sensitive to stresses such as high temperature or high concentrations of monovalent and divalent cations. The nss1 mutants showed severe vacuolar protein sorting and vacuolar morphology defects. The nss1 mutant was demonstrated to have a mutational lesion in the known VPS16 gene, which is essential for vacuolar protein sorting in S. cerevisiae. All of the vacuolar deficient mutants (vps11, vps16, vps18, and vps33) were sensitive to nystatin. Nystatin was found to cause extensive enlargement of the vacuole in wild-type S. cerevisiae cells. These results are discussed with special reference to the vacuolar function of S. cerevisiae.  相似文献   

6.
The collection of vacuolar protein sorting mutants (vps mutants) in Saccharomyces cerevisiae comprises of 41 complementation groups. The vacuoles in these mutant strains were examined using immunofluorescence microscopy. Most of the vps mutants were found to possess vacuolar morphologies that differed significantly from wild-type vacuoles. Furthermore, mutants representing independent vps complementation groups were found to share aberrant morphological features. Six distinct classes of vacuolar morphology were observed. Mutants from eight vps complementation groups were defective both for vacuolar segregation from mother cells into developing buds and for acidification of the vacuole. Another group of mutants, represented by 13 complementation groups, accumulated a novel organelle distinct from the vacuole that contained a late-Golgi protein, active vacuolar H(+)-ATPase complex, and soluble vacuolar hydrolases. We suggest that this organelle may represent an exaggerated endosome-like compartment. None of the vps mutants appeared to mislocalize significant amounts of the vacuolar membrane protein alkaline phosphatase. Quantitative immunoprecipitations of the soluble vacuolar hydrolase carboxypeptidase Y (CPY) were performed to determine the extent of the sorting defect in each vps mutant. A good correlation between morphological phenotype and the extent of the CPY sorting defect was observed.  相似文献   

7.
Yeast-hypha differentiation is believed to be necessary for the normal progression of Candida albicans infections. The emergence and extension of a germ tube from a parental yeast cell are accompanied by dynamic changes in vacuole size and morphology. Although vacuolar function is required during this process, it is unclear if it is vacuolar expansion or some other vacuolar function that is important. We previously described a C. albicans vps11Delta mutant which lacked a recognizable vacuole compartment and with defects in multiple vacuolar functions. These include sensitivities to stress, reduced proteolytic activities, and severe defects in filamentation. Herein we utilize a partially functional VPS11 allele (vps11hr) to help define which vacuolar functions are required for differentiation and which influence interaction with macrophages. Mutant strains harboring this allele are not osmotically or temperature sensitive and have normal levels of secreted aspartyl protease and carboxypeptidase Y activity but have a fragmented vacuole morphology. Moreover, this mutant is defective in filamentation, suggesting that the major role the vacuole plays in yeast-hypha differentiation may relate directly to its morphology. The results of this study support the hypothesis that vacuole expansion is required during germ tube emergence. Both vps11 mutants were severely attenuated in their ability to kill a macrophage cell line. The viability of the vps11delta mutant was significantly reduced during macrophage interaction compared to that in the control strains, while the vps11hr mutant was unaffected. This implies some vacuolar functions are required for Candida survival within the macrophage, while additional vacuolar functions are required to inflict injury on the macrophage.  相似文献   

8.
Lead is an important environmental pollutant. The role of vacuole, in Pb detoxification, was studied using a vacuolar protein sorting mutant strain (vps16Δ), belonging to class C mutants. Cells disrupted in VPS16 gene, did not display a detectable vacuolar-like structure. Based on the loss of cell proliferation capacity, it was found that cells from vps16Δ mutant exhibited a hypersensitivity to Pb-induced toxicity, compared to wild type (WT) strain. The function of vacuolar H+-ATPase (V-ATPase), in Pb detoxification, was evaluated using mutants with structurally normal vacuoles but defective in subunits of catalytic (vma1Δ or vma2Δ) or membrane domain (vph1Δ or vma3Δ) of V-ATPase. All mutants tested, lacking a functional V-ATPase, displayed an increased susceptibility to Pb, comparatively to cells from WT strain. Modification of vacuolar morphology, in Pb-exposed cells, was visualized using a Vma2p-GFP strain. The treatment of yeast cells with Pb originated the fusion of the medium size vacuolar lobes into one enlarged vacuole. In conclusion, it was found that vacuole plays an important role in the detoxification of Pb in Saccharomyces cerevisiae; in addition, a functional V-ATPase was required for Pb compartmentalization.  相似文献   

9.
The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4- ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.  相似文献   

10.
M Babst  T K Sato  L M Banta    S D Emr 《The EMBO journal》1997,16(8):1820-1831
In a late-Golgi compartment of the yeast Saccharomyces cerevisiae, vacuolar proteins such as carboxypeptidase Y (CPY) are actively sorted away from the secretory pathway and transported to the vacuole via a pre-vacuolar, endosome-like intermediate. The vacuolar protein sorting (vps) mutant vps4 accumulates vacuolar, endocytic and late-Golgi markers in an aberrant multilamellar pre-vacuolar compartment. The VPS4 gene has been cloned and found to encode a 48 kDa protein which belongs to the protein family of AAA-type ATPases. The Vps4 protein was purified and shown to exhibit an N-ethylmaleimide-sensitive ATPase activity. A single amino acid change within the AAA motif of Vps4p yielded a protein that lacked ATPase activity and did not complement the protein sorting or morphological defects of the vps4 delta1 mutant. Indeed, when expressed at normal levels in wild-type cells, the mutant vps4 gene acted as a dominant-negative allele. The phenotypic characterization of a temperature-sensitive vps4 allele showed that the immediate consequence of loss of Vps4p function is a defect in vacuolar protein delivery. In this mutant, precursor CPY was not secreted but instead accumulated in an intracellular compartment, presumably the pre-vacuolar endosome. Electron microscopy revealed that upon temperature shift, exaggerated stacks of curved cisternal membranes (aberrant endosome) also accumulated in the vps4ts mutant. Based on these and other observations, we propose that Vps4p function is required for efficient transport out of the pre-vacuolar endosome.  相似文献   

11.
The vacuole is the major site of intracellular Ca2+ storage in yeast and functions to maintain cytosolic Ca2+ levels within a narrow physiological range. In this study, we examined how cellular Ca2+ homeostasis is maintained in a vps33Delta vacuolar biogenesis mutant. We found that growth of the vps33Delta strain was sensitive to high or low extracellular Ca2+. This strain could not properly regulate cytosolic Ca2+ levels and was able to retain only a small fraction of its total cellular Ca2+ in a nonexchangeable intracellular pool. Surprisingly, the vps33Delta strain contained more total cellular Ca2+ than the wild type strain. Because most cellular Ca2+ is normally found within the vacuole, this suggested that other intracellular compartments compensated for the reduced capacity to store Ca2+ within the vacuole of this strain. To test this hypothesis, we examined the contribution of the Golgi-localized Ca2+ ATPase Pmr1p in the maintenance of cellular Ca2+ homeostasis. We found that a vps33Delta/pmr1Delta strain was hypersensitive to high extracellular Ca2+. In addition, certain combinations of mutations effecting both vacuolar and Golgi Ca2+ transport resulted in synthetic lethality. These results indicate that the Golgi apparatus plays a significant role in maintaining Ca2+ homeostasis when vacuolar biogenesis is compromised.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, mutations in vacuolar protein sorting (VPS) genes result in secretion of proteins normally localized to the vacuole. Characterization of the VPS pathway has provided considerable insight into mechanisms of protein sorting and vesicle-mediated intracellular transport. We have cloned VPS9 by complementation of the vacuolar protein sorting defect of vps9 cells, characterized its gene product, and investigated its role in vacuolar protein sorting. Cells with a vps9 disruption exhibit severe vacuolar protein sorting defects and a temperature-sensitive growth defect at 38 degrees C. Electron microscopic examination of delta vps9 cells revealed the appearance of novel reticular membrane structures as well as an accumulation of 40- to 50-nm-diameter vesicles, suggesting that Vps9p may be required for the consumption of transport vesicles containing vacuolar protein precursors. A temperature-conditional allele of vps9 was constructed and used to investigate the function of Vps9p. Immediately upon shifting of temperature-conditional vps9 cells to the nonpermissive temperature, newly synthesized carboxypeptidase Y was secreted, indicating that Vps9p function is directly required in the VPS pathway. Antibodies raised against Vps9p immunoprecipitate a rare 52-kDa protein that fractionates with cytosolic proteins following cell lysis and centrifugation. Analysis of the VPS9 DNA sequence predicts that Vps9p is related to human proteins that bind Ras and negatively regulate Ras-mediated signaling. We term the related regions of Vps9p and these Ras-binding proteins a GTPase binding homology domain and suggest that it defines a family of proteins that bind monomeric GTPases. Vps9p may bind and serve as an effector of a rab GTPase, like Vps2lp, required for vacuolar protein sorting.  相似文献   

13.
The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells.  相似文献   

14.
C R Cowles  W B Snyder  C G Burd    S D Emr 《The EMBO journal》1997,16(10):2769-2782
More than 40 vacuolar protein sorting (vps) mutants have been identified which secrete proenzyme forms of soluble vacuolar hydrolases to the cell surface. A subset of these mutants has been found to show selective defects in the sorting of two vacuolar membrane proteins. Under non-permissive conditions, vps45tsf (SEC1 homolog) and pep12/vps6tsf (endosomal t-SNARE) mutants efficiently sort alkaline phosphatase (ALP) to the vacuole while multiple soluble vacuolar proteins and the membrane protein carboxypeptidase yscS (CPS) are no longer delivered to the vacuole. Vacuolar localization of ALP in these mutants does not require transport to the plasma membrane followed by endocytic uptake, as double mutants of pep12tsf and vps45tsf with sec1 and end3 sort and mature ALP at the non-permissive temperature. Given the demonstrated role of t-SNAREs such as Pep12p in transport vesicle recognition, our results indicate that ALP and CPS are packaged into distinct transport intermediates. Consistent with ALP following an alternative route to the vacuole, isolation of a vps41tsf mutant revealed that at non-permissive temperature ALP is mislocalized while vacuolar delivery of CPS and CPY is maintained. A series of domain-swapping experiments was used to define the sorting signal that directs selective packaging and transport of ALP. Our data demonstrate that the amino-terminal 16 amino acid portion of the ALP cytoplasmic tail domain contains a vacuolar sorting signal which is responsible for the active recognition, packaging and transport of ALP from the Golgi to the vacuole via a novel delivery pathway.  相似文献   

15.
Saccharomyces cerevisiae strains carrying vps18 mutations are defective in the sorting and transport of vacuolar enzymes. The precursor forms of these proteins are missorted and secreted from the mutant cells. Most vps18 mutants are temperature sensitive for growth and are defective in vacuole biogenesis; no structure resembling a normal vacuole is seen. A plasmid complementing the temperature-sensitive growth defect of strains carrying the vps18-4 allele was isolated from a centromere-based yeast genomic library. Integrative mapping experiments indicated that the 26-kb insert in this plasmid was derived from the VPS18 locus. A 4-kb minimal complementing fragment contains a single long open reading frame predicted to encode a 918-amino-acid hydrophilic protein. Comparison of the VPS18 sequence with the PEP3 sequence reported in the accompanying paper (R. A. Preston, H. F. Manolson, K. Becherer, E. Weidenhammer, D. Kirkpatrick, R. Wright, and E. W. Jones, Mol. Cell. Biol. 11:5801-5812, 1991) shows that the two genes are identical. Disruption of the VPS18/PEP3 gene (vps18 delta 1::TRP1) is not lethal but results in the same vacuolar protein sorting and growth defects exhibited by the original temperature-sensitive vps18 alleles. In addition, vps18 delta 1::TRP1 MAT alpha strains exhibit a defect in the Kex2p-dependent processing of the secreted pheromone alpha-factor. This finding suggests that vps18 mutations alter the function of a late Golgi compartment which contains Kex2p and in which vacuolar proteins are thought to be sorted from proteins destined for the cell surface. The Vps18p sequence contains a cysteine-rich, zinc finger-like motif at the COOH terminus. A mutant in which the first cysteine of this motif was changed to serine results in a temperature-conditional carboxypeptidase Y sorting defect shortly after a shift to nonpermissive conditions. We identified a similar cysteine-rich motif near the COOH terminus of another Vps protein, the Vps11/Pep5/End1 protein. Preston et al. (Mol. Cell. Biol. 11:5801-5812, 1991) present evidence that the Vps18/Pep3 protein colocalizes with the Vps11/Pep5 protein to the cytosolic face of the vacuolar membrane. Together with the similar phenotypes exhibited by both vps11 and vps18 mutants, this finding suggests that they may function at a common step during vacuolar protein sorting and that the integrity of their zinc finger motifs may be required for this function.  相似文献   

16.
pep5 mutants of Saccharomyces cerevisiae accumulate inactive precursors to the vacuolar hydrolases. In addition, they show a vestigial vacuole morphology and a sensitivity to growth on media containing excess divalent cations. This pleiotropic phenotype observed for pep5::TRP1 mutants is partially suppressed by the vps8-200 allele. pep5::TRP1 vps8-200 mutants show near wild-type levels of mature-sized soluble vacuolar hydrolases, growth on zinc-containing medium, and a more "wild-type" vacuolar morphology; however, aminopeptidase I and alkaline phosphatase accumulate as precursors. These data suggest that Pep5p is a bifunctional protein and that the TRP1 insertion does not eliminate function, but results in a shorter peptide that can interact with Vps8-200p, allowing for partial function. vps8 deletion/disruption mutants contain a single enlarged vacuole. This genetic interaction was unexpected, since Pep5p was thought to interact more directly with the vacuole, and Vps8p is thought to play a role in transport between the Golgi complex and the prevacuolar compartment. The data are consistent with Pep5p functioning both at the site of Vps8p function and more closely proximal to the vacuole. They also provide evidence that the three transport pathways to the vacuole either converge or share gene products at late step(s) in the pathway(s).  相似文献   

17.
Previous studies have demonstrated an important role for the vacuole in the virulence of the fungus Cryptococcus and studies in yeast have implicated the vacuolar protein Vps41 in copper loading of proteins such as iron transporters. However, our studies found that a cryptococcal vps41Delta strain displayed wild-type growth on media containing iron and copper chelators and normal activity of the copper-containing virulence factor laccase as well as almost normal growth at 37 degrees C and wild-type production of the virulence factor capsule. Despite these attributes, the vps41Delta mutant strain showed a dramatic attenuation of virulence in mice and co-incubation of mutant cells with the macrophage cell line, J774.16, resulted in a dramatic loss in viability of the vps41Delta mutant strain at 10 h compared with wild-type and complemented strains. Closer examination revealed that the vps41Delta mutant displayed a dramatic loss in viability after nutrient starvation which was traced to a failure to undergo G2 arrest, but there was no defect in the formation of autophagic or proteolytic vesicles. Our results indicate that VPS41 plays a key role in regulating starvation response in this pathogenic organism and that defects in cell cycle arrest are associated with attenuated pathogenic fitness in mammalian hosts.  相似文献   

18.
19.
The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37 degrees C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway.  相似文献   

20.
vps35 mutants of Saccharomyces cerevisiae exhibit severe defects in the localization of carboxypeptidase Y, a soluble vacuolar hydrolase. We have cloned the wild-type VPS35 gene by complementation of the vacuolar protein sorting defect exhibited by the vps35-17 mutant. Sequence analysis revealed an open reading frame predicted to encode a protein of 937 amino acids that lacks any obvious hydrophobic domains. Subcellular fractionation studies indicated that 80% of Vps35p peripherally associates with a membranous particulate cell fraction. The association of Vps35p with this fraction appears to be saturable; when overproduced, the vast majority of Vps35p remains in a soluble fraction. Disruption of the VPS35 gene demonstrated that it is not essential for yeast cell growth. However, the null allele of VPS35 results in a differential defect in the sorting of vacuolar carboxypeptidase Y (CPY), proteinase A (PrA), proteinase B (PrB), and alkaline phosphatase (ALP). proCPY was quantitatively missorted and secreted by delta vps35 cells, whereas almost all of proPrA, proPrB, and proALP were retained within the cell and converted to their mature forms, indicating delivery to the vacuole. Based on these observations, we propose that alternative pathways exist for the sorting and/or delivery of proteins to the vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号