首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (β-catenin and Axin) in opposing fashion. We have now fused β-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts.  相似文献   

2.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.  相似文献   

3.
4.
Medulloblastoma: developmental mechanisms out of control   总被引:1,自引:0,他引:1  
Medulloblastoma, which is a highly aggressive central nervous system neoplasm, represents an intriguing example of how deregulated developmental mechanisms can lead to tumour development. Recent advances in the understanding of the role of Sonic Hedgehog, Wnt and Notch signalling pathways in the development of the cerebellum have shed new light on medulloblastoma pathogenesis.  相似文献   

5.
Similarities between the Hedgehog and Wnt signaling pathways   总被引:8,自引:0,他引:8  
  相似文献   

6.
Continuous neurogenesis in the adult nervous system requires a delicate balance between proliferation and differentiation. Although Wnt/β-catenin and Hedgehog signalling pathways are thought to share a mitogenic function in adult neural stem/progenitor cells, it remains unclear how they interact in this process. Adult amphibians produce retinal neurons from a pool of neural stem cells localised in the ciliary marginal zone (CMZ). Surprisingly, we found that perturbations of the Wnt and Hedgehog pathways result in opposite proliferative outcomes of neural stem/progenitor cells in the CMZ. Additionally, our study revealed that Wnt and Hedgehog morphogens are produced in mutually exclusive territories of the post-embryonic retina. Using genetic and pharmacological tools, we found that the Wnt and Hedgehog pathways exhibit reciprocal inhibition. Our data suggest that Sfrp-1 and Gli3 contribute to this negative cross-regulation. Altogether, our results reveal an unexpected antagonistic interplay of Wnt and Hedgehog signals that may tightly regulate the extent of neural stem/progenitor cell proliferation in the Xenopus retina.  相似文献   

7.
We have carried out a small pool expression screen for modulators of the Wnt/beta-catenin pathway and identified Xenopus R-spondin2 (Rspo2) as a secreted activator of this cascade. Rspo2 is coexpressed with and positively regulated by Wnt signals and synergizes with Wnts to activate beta-catenin. Analyses of functional interaction with components of the Wnt/beta-catenin pathway suggest that Rspo2 functions extracellularly at the level of receptor ligand interaction. In addition to activating the Wnt/beta-catenin pathway, Rspo2 overexpression blocks Activin, Nodal, and BMP4 signaling in Xenopus, raising the possibility that it may negatively regulate the TGF-beta pathway. Antisense Morpholino experiments in Xenopus embryos and RNAi experiments in HeLa cells reveal that Rspo2 is required for Wnt/beta-catenin signaling. In Xenopus embryos depleted of Rspo2, the muscle markers myoD and myf5 fail to be activated and later muscle development is impaired. Thus, Rspo2 functions in a positive feedback loop to stimulate the Wnt/beta-catenin cascade.  相似文献   

8.
9.
The activation of developmental signaling pathways such as Notch, Hedgehog and Wnt has implications in the onset and progression of numerous types of cancer. Consequently, targeting of such pathways is considered an attractive therapeutic approach. Inhibition of the Wnt signaling cascade proves to be complicated, in part, due to the lack of druggable pathway components. The central hub in Wnt signaling is the protein β-catenin, which is involved in numerous protein–protein interactions. In general, the inhibition of protein–protein interactions is challenging in particular with binding interfaces lacking pronounced hydrophobic pockets. Herein, we give an overview of β-catenin–protein interactions, and we review active agents that were reported to inhibit canonical Wnt signaling via direct targeting of β-catenin.  相似文献   

10.
Crk is required for apoptosis in Xenopus egg extracts.   总被引:2,自引:0,他引:2       下载免费PDF全文
Apoptosis is essential for the development and homeostasis of multicellular organisms. Recently, a cell-free extract prepared from Xenopus eggs was shown to recapitulate intracellular apoptotic pathways in vitro. While many stimuli have been shown to trigger apoptosis in a variety of cell types, the intracellular signaling pathways involved in apoptosis remain largely unknown. Here we show that addition of a recombinant protein containing the phosphotyrosine binding (SH2) domain from the adaptor protein crk, but not those derived from a panel of other signaling proteins, can prevent apoptosis in the Xenopus egg extract system. Furthermore, immunodepletion of endogenous crk protein from the egg extracts, or addition of anti-crk antisera to these extracts, prevents apoptosis. The ability to undergo apoptosis can be restored to these extracts by addition of recombinant crk protein. These results directly demonstrate that crk participates in apoptotic signaling.  相似文献   

11.
Pancreatic ductal adenocarcinoma (PDA) is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.  相似文献   

12.
Hedgehog信号通路与肿瘤   总被引:1,自引:0,他引:1  
Hedgehog信号通路在胚胎发育中细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hedgehog信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。论文综述了Hedgehog信号通路的作用机理,与其他信号通路、蛋白质因子的相互联系,以及在肿瘤研究中所关注的靶位点和小分子化合物抑制剂,对于癌症的预防和治疗具有一定的参考价值。  相似文献   

13.
14.
Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions.In stem cells,a small number of pathways,notably those of TGF-?/BMP,Hedgehog,Notch,and Wnt,are responsible for the regulation of pluripotency and differentiation.During embryonic development,these pathways govern cell fate specifications as well as the formation of tissues and organs.In adulthood,their normal functions are important for tissue homeostasis and regeneration,whereas aberrations result in diseases,such as cancer and degenerative disorders.In complex biological systems,stem cell signaling pathways work in concert as a network and exhibit crosstalk,such as the negative crosstalk between Wnt and Notch.Over the past decade,genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways.Indeed,discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry.Remarkable progress has been made and several promising drug candidates have entered into clinical trials.This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.  相似文献   

15.
Paracrine pathway activities are being increasingly recognized as instrumental regulatory mechanisms of epithelial-stromal interactions that play important roles in physiological and pathological self-renewal of stem cells and in the initiation and maintenance of neoplastic tumor development.Stromal-specific Hedgehog(Hh)responses and epithelial-associated Wnt pathway activities have been recently appreciated as important factors in stem cell self-renewal and carcinogenesis.Furthermore,Hh and Wnt pathways frequently crosstalk with each other to regulate the growth of epithelial cells in a context-dependent manner.Because small molecule modulators of Hh and Wnt pathway activities are readily available,emerging roles of Hh-Wnt pathway crosstalk in epithelial-stromal interactions will shed light on the development of regenerative and anti-cancer medicines.  相似文献   

16.
17.
18.
肿瘤干细胞是肿瘤中存在的一小群具有自我更新和分化潜能的细胞,也是存在于肿瘤 组织中具有干细胞样能力的肿瘤细胞亚群,在肿瘤的发生、发展中起着非常重要的作用.近年来发现,肿瘤干细胞的生长调控与Wnt、Notch、Hedgehog等多种信号转导通 路有关.本文简要综述了肿瘤干细胞生长相关信号转导通路的研究进展,旨在为肿瘤干细胞研究和临床应用提供理论依据.  相似文献   

19.
20.
Casso DJ  Biehs B  Kornberg TB 《Genetics》2011,187(2):485-499
Notch has multiple roles in the development of the Drosophila melanogaster wing imaginal disc. It helps specify the dorsal-ventral compartment border, and it is needed for the wing margin, veins, and sensory organs. Here we present evidence for a new role: stimulating growth in response to Hedgehog. We show that Notch signaling is activated in the cells of the anterior-posterior organizer that produce the region between wing veins 3 and 4, and we describe strong genetic interactions between the gene that encodes the Hedgehog pathway activator Smoothened and the Notch pathway genes Notch, presenilin, and Suppressor of Hairless and the Enhancer of split complex. This work thus reveals a novel collaboration by the Hedgehog and Notch pathways that regulates proliferation in the 3-4 intervein region independently of Decapentaplegic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号