共查询到20条相似文献,搜索用时 0 毫秒
1.
Peter Graumann Moharned A. Marahiel 《BioEssays : news and reviews in molecular, cellular and developmental biology》1996,18(4):309-315
Divergent evolution can explain how many proteins containing structurally similar domains, which perform a variety of related functions, have evolved from a relatively small number of modules or protein domains. However, it cannot explain how protein domains with similar, but distinguishable, functions and similar, but distinguishable, structures have evolved. Examples of this are the RNA-binding proteins containing the RNA-binding domain (RBD), and a newly established protein group, the cold-shock domain (CSD) protein family. Both protein domains contain conserved RNP motifs on similar single-stranded nucleic acid-binding surfaces. Apart from the RNP motifs, which have a similar function, the two families show little similarity in topology or amino acid sequence. This can be considered an interesting example of convergent evolution at the molecular level. Previously, a β-sheet surface was found to interact with RNA in non-homologous proteins from yeast, phage and man, revealing that this mode of RNA binding may be a widely recurring theme. 相似文献
2.
3.
Blood-borne neurohormonal signals reflect the intermittent burst-like release of peptides and steroids from neurons, glands and target tissues. Hormones control basic physiological processes, such as growth, metabolism, reproduction and stress-related adaptations. Secreted molecules undergo combined diffusion, advection and irreversible elimination from the circulation. Quantification of these interdependent processes by a structurally relevant model embodying discrete event times, continuous rates of secretion and elimination, and stochastic variations poses a formidable challenge. In an experimental setting, one observes only the hormone concentrations, which comprise a time-varying composite of secretion and elimination. The number, shape and location of underlying bursts (pulses) and attendant secretion and kinetic parameters are unobserved. The ability to estimate the properties of these processes from the observed data is fundamental to an understanding of regulated hormonal dynamics. The present formulation allows objective simultaneous appraisal of discrete (pulse times) and continuous (secretion/elimination) properties of neuroglandular activity in the presence of random variability. A probability distribution is constructed for the structural parameters (secretion/elimination, pulsing), and an algorithm is developed by which one can, based upon observed hormone concentration data, make probabilistic statements about the underlying structure: pulse frequency per day, total basal (constitutive) and pulsatile secretion per day, and half-lives of elimination. The algorithm consists of the following steps: first, explicit construction of a family of sequentially decreasing putative pulse-time sets for a given neurohormone concentration time series; and then, recursive iteration between the following two: (a) for a given pulse-time set, generate a sample from the probability distribution of unknown underlying hormone secretion and elimination rates; and (b) determine whether or not a probability-based transition from one pulse-time set to another is merited (i.e., add/remove a pulse-time or stay the same). We apply this procedure illustratively to joint estimation of pulse times, secretion rates and elimination kinetics of selected pituitary hormones (ACTH, LH and GH). 相似文献
4.
Background
Due to its easy applicability, pulse wave has been proposed as a surrogate of electrocardiogram (ECG) for the analysis of heart rate variability (HRV). However, its smoother waveform precludes accurate measurement of pulse-to-pulse interval by fiducial-point algorithms. Here we report a pulse frequency demodulation (PFDM) technique as a method for extracting instantaneous pulse rate function directly from pulse wave signal and its usefulness for assessing pulse rate variability (PRV). 相似文献5.
cAMP serves as a second messenger in virtually all organisms. The most wide-spread class of cAMP-generating enzymes are the class III adenylyl cyclases. Most class III adenylyl cyclases are multi-domain proteins. The catalytic domains exclusively work as dimers, catalysis proceeds at the dimer interface, so that both monomers provide catalytic residues to each catalytic center. Inspection of amino acid sequence profiles suggests a division of the class III adenylyl cyclases in to four subclasses, class IIIa–IIId. Genome projects and postgenomic analysis have provided novel aspects in terms of catalysis and regulation. Alterations in the canonical catalytic residues occur in all four subclasses suggesting a plasticity of the catalytic mechanisms. The vast variety of additional, probably regulatory modules found in class III adenylyl cyclases obviously reflects a large collection of regulatory inputs the catalytic domains have adapted to. The large versatility of class III adenylyl cyclase catalytic domains remains a major scientific challenge. 相似文献
6.
Chemotaxis is the result of a refined interplay among various intracellular molecules that process spatial and temporal information. Here we present a modular scheme of the complex interactions between the front and the back of cells that allows them to navigate. First, at the front of the cell, activated Rho-type GTPases induce actin polymerization and pseudopod formation. Second, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is produced in a patch at the leading edge, where it binds pleckstrin-homology-domain-containing proteins, which enhance actin polymerization and translocation of the pseudopod. Third, in Dictyostelium amoebae, a cyclic-GMP-signalling cascade has been identified that regulates myosin filament formation in the posterior of the cell, thereby inhibiting the formation of lateral pseudopodia that could misdirect the cell. 相似文献
7.
8.
Perraud AL Rippe K Bantscheff M Glocker M Lucassen M Jung K Sebald W Weiss V Gross R 《Biochimica et biophysica acta》2000,1478(2):341-354
Biophysical and biochemical properties of signalling proteins or domains derived from the unorthodox EvgAS and BvgAS two-component phosphorelay systems of Escherichia coli and Bordetella pertussis were investigated. Oligomerization of the effector proteins EvgA and BvgA and of truncated EvgS and BvgS derived signalling proteins containing the receiver and histidine containing phosphotransfer (HPt) domains or comprising only the HPt domains were characterized by native gel electrophoresis, gel permeation experiments and analytical ultracentrifugation. The results obtained by the different methods are consistent with non-phosphorylated EvgA and BvgA proteins being dimers in solution with a dissociation constant significantly below 1 microM. In contrast, all sensor derived domains of EvgS and BvgS were observed to be monomers in vitro. No indications for a phosphorylation induced stimulation of oligomerization of the C-terminal histidine kinase domains could be detected. In agreement with these data, surface plasmon resonance studies revealed a 2:1 stoichiometry in the interaction of EvgA with the immobilized EvgS HPt domain and an affinity constant of 1. 24x10(6) M(-1). 相似文献
9.
The plant hormone abscisic acid (ABA) is fundamental for land plant adaptation to water-limited conditions. Osmostress, such as drought, induces ABA accumulation in angiosperms, triggering physiological responses such as stomata closure. The core components of angiosperm ABA signalling are soluble ABA receptors, group A protein phosphatase type 2C and SNF1-related protein kinase2 (SnRK2). ABA also has various functions in non-angiosperms, however, suggesting that its role in adaptation to land may not have been angiosperm-specific. Indeed, among land plants, the core ABA signalling components are evolutionarily conserved, implying their presence in a common ancestor. Results of ongoing functional genomics studies of ABA signalling components in bryophytes and algae have expanded our understanding of the evolutionary role of ABA signalling, with genome sequencing uncovering the ABA core module even in algae. In this review, we describe recent discoveries involving the ABA core module in non-angiosperms, tracing the footprints of how ABA evolved as a phytohormone. We also cover the latest findings on Raf-like kinases as upstream regulators of the core ABA module component SnRK2. Finally, we discuss the origin of ABA signalling from an evolutionary perspective. 相似文献
10.
It is shown that the nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency change substantially due to a reduction in the effective electron–ion collision frequency. 相似文献
11.
Non-genomic convergent and divergent signalling of rapid responses to aldosterone and estradiol in mammalian colon 总被引:6,自引:0,他引:6
Studies from our laboratory have demonstrated rapid ( < 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC activity and a PKC-dependent Ca(2+) entry through L-type Ca(2+) channels specifically by mineralocorticoids in distal colon. Aldosterone directly stimulates the activity of the PKC alpha isoform (but not PKC delta, PKC epsilon and PKC zeta) in a cell-free assay system containing only purified commercially available enzyme, appropriate substrate peptide, co-factors and lipid vesicles. The primary ion transport target of the non-genomic signal transduction cascade elicited by aldosterone in epithelia is the Na(+)-H(+) exchanger. In isolated colonic crypts, aldosterone produced a PKC alpha sensitive intracellular alkalinisation within 1 min of hormone addition. Intracellular alkalinisation upregulates an ATP-dependent K(+) channel, which is involved in K(+) recycling to maintain the electrical driving force for Na(+) absorption, while inhibiting a Ca(2+) -dependent K(+) channel, which generates the charge balance for Cl(-) secretion. The non-genomic response to aldosterone in distal colon appears to enhance the capacity for absorption while down-regulating the potential for secretion. We have also demonstrated rapid (< 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC alpha activity, and a PKC delta- and PKA-dependent Ca(2+) entry through di-hydropyridine-blockable Ca(2+) channels specifically by 17beta-estradiol in distal colon. These rapid effects are female gender specific and are insensitive to inhibitors of the classical estrogen receptor (ER). 17 beta-Estradiol directly stimulated the activity of both PKC delta and PKC alpha (but not PKC epsilon or PKC zeta) in a cell-free assay system. E2 rapidly inhibited basolateral K(Ca) channel activity which would be expected to result in an acute inhibition of Cl(-) secretion. Physiological concentrations of E2 (0.1-10 nM) reduced both basal and secretagogue-induced Cl(-) secretion. This anti-secretory effect of E2 is sensitive to PKC inhibition, intracellular Ca(2+) chelation, and is female gender specific and insensitive to inhibitors of the classical ER. These observations link rapid non-genomic activation of second messengers with a rapid gender-specific physiological effect in the whole tissue. Aldosterone and E2 differ in their protein kinase signal transduction and both hormones stimulate specific PKC isoforms indicating both common and divergent signalling systems for salt-retaining steroid hormones. The physiological function of non-genomic effects of aldosterone and estradiol is to shift the balance from net secretion to net absorption in a pluripotential epithelium. 相似文献
12.
BMP-binding modules in chordin: a model for signalling regulation in the extracellular space 总被引:7,自引:0,他引:7
Larraín J Bachiller D Lu B Agius E Piccolo S De Robertis EM 《Development (Cambridge, England)》2000,127(4):821-830
A number of genetic and molecular studies have implicated Chordin in the regulation of dorsoventral patterning during gastrulation. Chordin, a BMP antagonist of 120 kDa, contains four small (about 70 amino acids each) cysteine-rich domains (CRs) of unknown function. In this study, we show that the Chordin CRs define a novel protein module for the binding and regulation of BMPs. The biological activity of Chordin resides in the CRs, especially in CR1 and CR3, which have dorsalizing activity in Xenopus embryo assays and bind BMP4 with dissociation constants in the nanomolar range. The activity of individual CRs, however, is 5- to 10-fold lower than that of full-length Chordin. These results shed light on the molecular mechanism by which Chordin/BMP complexes are regulated by the metalloprotease Xolloid, which cleaves in the vicinity of CR1 and CR3 and would release CR/BMP complexes with lower anti-BMP activity than intact Chordin. CR domains are found in other extracellular proteins such as procollagens. Full-length Xenopus procollagen IIA mRNA has dorsalizing activity in embryo microinjection assays and the CR domain is required for this activity. Similarly, a C. elegans cDNA containing five CR domains induces secondary axes in injected Xenopus embryos. These results suggest that CR modules may function in a number of extracellular proteins to regulate growth factor signalling. 相似文献
13.
A nonlinear equation is derived and its analytic solution describing a soliton-like perturbation propagating at velocity close to the speed of light is found. It is shown that the rate at which the amplitude of a soliton excited by a cold electron beam in a magnetized plasma-filled waveguide grows is proportional to (n b/n 0)1/3, as is the linear growth rate of the beam-plasma instability. 相似文献
14.
15.
Early shaping of Xenopus laevis embryos occurs through convergent and extension movements, a process that is driven by intercalation of polarized dorsal mesodermal cells and regulated by non-canonical Wnt signalling. Here, we have identified Xenopus syndecan-4 (xSyn4), a cell-surface transmembrane heparan sulphate proteoglycan. At the gastrula stage, xSyn4 is expressed in the involuting dorsal mesoderm and the anterior neuroectoderm. Later, it is found in the pronephros, branchial arches, brain and tailbud. Both gain- and loss-of-function of xSyn4 impaired convergent extension movements in Xenopus embryos and in activin-treated ectodermal explants. xSyn4 interacts functionally and biochemically with the Wnt receptor Frizzled7 (xFz7) and its signal transducer Dishevelled (xDsh). Furthermore, xSyn4 is necessary and sufficient for translocation of xDsh to the plasma membrane - a landmark in the activation of non-canonical Wnt signalling. Our results suggest that the ability of xSyn4 to translocate xDsh is regulated by fibronectin, a component of the extracellular matrix required for proper convergent extension movements. We propose a model where xSyn4 and fibronectin cooperate with xFz7 and Wnt in the specific activation of the non-canonical Wnt pathway. 相似文献
16.
<正>The use of optogenetic and chemogenetic approaches to control cellular activities with high temporal, spatial and cell-type specific resolution has profoundly transformed the field of neuroscience. In addition to enabling the manipulation of neuronal excitability, there is a great need for targeting intracellular signalling proteins and secondary messengers precisely, e.g., 相似文献
17.
Eckehard Baumann Heinz Penzlin 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1987,157(4):511-517
Summary The heart rate accelerating peptide neurohormone D is rapidly inactivated by intact Malpighian tubules of cockroaches and also by homogenates of them. The peptide is removed from a solution by an active uptake mechanism. Within the tubule cells one or a set of soluble proteinases with a molecular mass around 45000 Da hydrolyze the neuropeptide. The inhibition of the reaction by synthetic protease inhibitors and chelating agents characterizes the enzyme(s) as metalloendopeptidase with serine or cysteine at the active site. This seems to be the first evidence that a peptidase comparable to the neutral metalloendopeptidase of mammalian kidney microvilli exists in insect Malpighian tubules and could play an important role in the hydrolysis of neuropeptides.Abbreviations
EDTA
ethylenediamine tetraacetic acid
-
AEBSF
4--aminoethylbenzenesulfonylfluoride
-
PMSF
pnenylmethanesulfonyl fluoride
-
TLCK
tosyl-lysine chloromethyl ketone
-
TPCK
tosyl-phenylalanyl chloromethyl ketone
-
CMB
chloromercuribenzoic acid
-
DNP-Ala
N-dinitrophenyl-alanine
-
TFA
trifluoroacetic acid 相似文献
18.
The differential control of gonadotropin secretion by GnRH pulse frequency may reflect changes in the storage of LH and FSH. To test this hypothesis, ovariectomized ewes passively immunized against GnRH received pulsatile injections of saline (group 1) or GnRH analogue: 1 pulse/6 h for group 2 or 1 pulse/h for group 3, during 48 h. Immunization against GnRH suppressed pulsatility of LH release and reduced mean FSH plasma levels (3.1 +/- 0.2 vs. 2.2 +/- 0.1 ng/ml before and 3 days after immunization, respectively). Pulsatile GnRH analogue replacement restored LH pulses but not FSH plasma levels. Low and high frequencies of GnRH analogue increased the percentage of LH-containing cells in a similar way (group 1 = 6.9 +/- 0.5% vs. group 2 = 10.5 +/- 0.8%, or vs. group 3 = 9.6 +/- 0.4%). In contrast, the rise of the percentage of FSH-containing cells was greater after administration of the analogue at low frequency than at high frequency (group 1 = 3.7 +/- 0.4% vs. group 2 = 8.4 +/- 0.2%, or vs. group 3 = 5.2 +/- 0.8%). Moreover, while GnRH pulse frequency had no differential effect on FSHbeta mRNA levels, LHbeta mRNA levels were higher under high than low frequency. These data showed that the frequency of GnRH pulses can modulate the gonadotropin storage pattern in the ewe. These changes may be a component of the differential regulation of LH and FSH secretion. 相似文献
19.
Differential regulation of gonadotropin subunit messenger ribonucleic acids by gonadotropin-releasing hormone pulse frequency in ewes 总被引:2,自引:0,他引:2
K Leung A H Kaynard B P Negrini K E Kim R A Maurer T D Landefeld 《Molecular endocrinology (Baltimore, Md.)》1987,1(10):724-728
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Schwartz MA 《Trends in cell biology》1992,2(10):304-308
Recent work has shown that integrin receptors serve not only as structural receptors that connect the extracellular matrix to the cytoskeleton, but also as signalling receptors that regulate intracellular pH, intracellular free calcium, phosphorylation of proteins on tyrosine and inositol lipid turnover. The ability of extracellular matrix to influence growth, differentiation and other cell functions is very likely related to their effects on signaling pathways inside the cell. 相似文献