首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium- and integrin-binding protein 1 (CIB1) is a ubiquitous Ca(2+)-binding protein and a specific binding partner for the platelet integrin αIIb cytoplasmic domain, which confers the key role of CIB1 in hemostasis. CIB1 is also known to be involved in apoptosis, embryogenesis, and the DNA damage response. In this study, the solution structures of both Ca(2+)-CIB1 and Mg(2+)-CIB1 were determined using solution-state NMR spectroscopy. The methyl groups of Ile, Leu, and Val were selectively protonated to compensate for the loss of protons due to deuteration. The solution structure of Ca(2+)-CIB1 possesses smaller opened EF-hands in its C-domain compared with available crystal structures. Ca(2+)-CIB1 and Mg(2+)-CIB1 have similar structures, but the N-lobe of Mg(2+)-CIB1 is slightly more opened than that of Ca(2+)-CIB1. Additional NMR experiments, such as chemical shift perturbation and methyl group solvent accessibility as measured by a nitroxide surface probe, were carried out to further characterize the structures of Ca(2+)-CIB1 and Mg(2+)-CIB1 as well as their interactions with the integrin αIIb cytoplasmic domain. NMR measurements of backbone amide proton slow motion (microsecond to millisecond) dynamics confirmed that the C-terminal helix of Ca(2+)-CIB1 is displaced upon αIIb binding. The EF-hand III of both Ca(2+)-CIB1 and Mg(2+)-CIB1 was identified to be directly involved in the interaction of CIB1 with αIIb. Together, these data illustrate that CIB1 behaves quite differently from related EF-hand regulatory calcium-binding proteins, such as calmodulin or neuronal calcium sensor proteins.  相似文献   

2.
Calcium- and integrin-binding protein 1 (CIB1) regulates platelet aggregation in hemostasis through a specific interaction with the alphaIIb cytoplasmic domain of platelet integrin alphaIIbbeta3. In this work we report the structural characteristics of CIB1 in solution and the mechanistic details of its interaction with a synthetic peptide derived from the alphaIIb cytoplasmic domain. NMR spectroscopy experiments using perdeuterated CIB1 together with heteronuclear nuclear Overhauser effect experiments have revealed a well folded alpha-helical structure for both the ligand-free and alphaIIb-bound forms of the protein. Residual dipolar coupling experiments have shown that the N and C domains of CIB1 are positioned side by side, and chemical shift perturbation mapping has identified the alphaIIb-binding site as a hydrophobic channel spanning the entire C domain and part of the N domain. Data obtained with a truncated version of CIB1 suggest that the extreme C-terminal end of the protein weakly interacts with this channel in the absence of a biological target, but it is displaced by the alphaIIb cytoplasmic domain, suggesting a novel mechanism to increase binding specificity.  相似文献   

3.
Calcium- and integrin-binding protein (CIB) binds to the 20-residue alphaIIb cytoplasmic domain of platelet alphaIIbbeta3 integrin. Amino acid sequence similarities with calmodulin (CaM) and calcineurin B (CnB) allowed the construction of homology-based models of calcium-saturated CIB as well as apo-CIB. In addition, the solution structure of the alphaIIb cytoplasmic domain in 45% aqueous trifluoroethanol was solved by conventional two-dimensional NMR methods. The models indicate that the N-terminal domain of CIB possesses a number of positively charged residues in its binding site that could interact with the acidic carboxy-terminal LEEDDEEGE sequence of alphaIIb. The C-terminal domain of CIB seems well-suited to bind the sequence WKVGFFKR, which forms a well-structured alpha helix; this is analogous to calmodulin and calcineurin B, which also bind alpha helices. Similarities between the C-terminal domains of CIB and calmodulin suggest that binding of CIB to the cytoplasmic domain of alphaIIb may be affected by fluctuations in the intracellular calcium concentration.  相似文献   

4.
We have used recombinant or synthetic alphaIIb and beta3 integrin cytoplasmic peptides to study their in vitro complexation and ligand binding capacity by surface plasmon resonance. alpha.beta heterodimerization occurred in a 1:1 stoichiometry with a weak KD in the micromolar range. Divalent cations were not required for this association but stabilized the alpha.beta complex by decreasing the dissociation rate. alpha.beta complexation was impaired by the R995A substitution or the KVGFFKR deletion in alphaIIb but not by the beta3 S752P mutation. Recombinant calcium- and integrin-binding protein (CIB), an alphaIIb-specific ligand, bound to the alphaIIb cytoplasmic peptide in a Ca2+- or Mn2+-independent, one-to-one reaction with a KD value of 12 microM. In contrast, in vitro liquid phase binding of CIB to intact alphaIIbbeta3 occurred preferentially with Mn2+-activated alphaIIbbeta3 conformers, as demonstrated by enhanced coimmunoprecipitation of CIB with PAC-1-captured Mn2+-activated alphaIIbbeta3, suggesting that Mn2+ activation of intact alphaIIbbeta3 induces the exposure of a CIB-binding site, spontaneously exposed by the free alphaIIb peptide. Since CIB did not stimulate PAC-1 binding to inactive alphaIIbbeta3 nor prevented activated alphaIIbbeta3 occupancy by PAC-1, we conclude that CIB does not regulate alphaIIbbeta3 inside-out signaling, but rather is involved in an alphaIIbbeta3 post-receptor occupancy event.  相似文献   

5.
Calcium- and integrin-binding protein 1 (CIB1) is a ubiquitous, multifunctional regulatory protein consisting of four helix-loop-helix EF-hand motifs. Neither EF-I nor EF-II binds divalent metal ions; however, EF-III is a mixed Mg2+/Ca2+-binding site, and EF-IV is a higher-affinity Ca2+-specific site. Through the generation of several CIB1 mutant proteins, we have investigated the importance of the last (-Z) metal-coordinating position of EF-III (D127) and EF-IV (E172) with respect to the binding of CIB1 to Mg2+, Ca2+, and its biological target, the cytoplasmic domain of the platelet alphaIIb integrin. A D127N mutant had reduced Mg2+ and Ca2+ affinity at EF-III but retained affinity for the alphaIIb domain. A D127E mutant had increased Mg2+ and Ca2+ affinity at EF-III, but unexpectedly, the affinity for the alphaIIb domain was too low for binding to be observed. E172Q and E172D mutants showed no and weak Mg2+ binding at EF-IV, respectively, and each mutant had reduced Ca2+ affinity at EF-IV and showed moderate metal-dependent differences in affinity for the alphaIIb domain. Finally, a D127Q mutant bound Mg2+ and Ca2+ in a manner similar to that of D127N, but like that of D127E, the affinity for the alphaIIb domain was reduced below the detection limit. These data, combined with a NMR-based structural comparison of the Mg2+- and Ca2+-loaded CIB1-alphaIIb peptide complexes, suggest that the D127E and D127Q mutations have a disruptive effect on alphaIIb binding since they expand the metal-binding loop and change the alpha-helix positions in EF-III. Conversely, upon replacement of the ancestral Glu with Asp at the -Z position of EF-III, CIB1 gained affinity for alphaIIb, and the Ca2+ affinity of CIB1 shifted into a range where the protein is able to act as an intracellular Ca2+ sensor.  相似文献   

6.
It is widely accepted that a pair of EF-hands is the functional unit of typical four EF-hand proteins such as calmodulin or troponin C. In this work we investigate the structure and stability of the four EF-hand domains in the related protein calcium- and integrin-binding protein 1 (CIB1) in the presence and absence of Mg2+ or Ca2+, to determine if similar EF-hand interactions occur. The backbone structure and flexibility of CIB1 were first studied by NMR spectroscopy, and these studies were complimented with steady-state fluorescence spectroscopy and chemical denaturation experiments using mutant CIB1 proteins having single Trp reporter groups in each of the four EF-hand domains EF-I (F34W), EF-II (F91W), EF-III (L128W), and EF-IV (F173W). We find that Mg2+-CIB1 adopts a well-folded structure similar to Ca2+-CIB1, except for some conformational heterogeneity in the C-terminal EF-IV domain. The structure of apo-CIB1 is significantly more dynamic, especially within EF-II, EF-III, and a partially unfolded EF-IV region, but the N-terminal EF-I region of apo-CIB1 has a well-ordered and more stable structure. The data reveal significant communication between the N- and C-lobes of CIB1, and show that transient intermediate conformations are formed along the unfolding pathway for each form of the protein. Collectively the data demonstrate that the communication between the paired EF-hand domains as well as between the N- and C-lobes of CIB1 is distinct from the ancestral proteins calmodulin and troponin C, which might be important for the unique function of CIB1 in numerous biological processes.  相似文献   

7.
CIB1 (CIB) is an EF-hand-containing protein that binds multiple effector proteins, including the platelet alphaIIbbeta3 integrin and several serine/threonine kinases and potentially modulates their function. The crystal structure for Ca(2+)-bound CIB1 has been determined at 2.0 A resolution and reveals a compact alpha-helical protein containing four EF-hands, the last two of which bind calcium ions in the standard fashion seen in many other EF-hand proteins. CIB1 shares high structural similarity with calcineurin B and the neuronal calcium sensor (NCS) family of EF-hand-containing proteins. Most importantly, like calcineurin B and NCS proteins, which possess a large hydrophobic pocket necessary for ligand binding, CIB1 contains a hydrophobic pocket that has been implicated in ligand binding by previous mutational analysis. However, unlike several NCS proteins, Ca(2+)-bound CIB1 is largely monomeric whether bound to a relevant peptide ligand or ligand-free. Differences in structure, oligomeric state, and phylogeny define a new family of CIB1-related proteins that extends from arthropods to humans.  相似文献   

8.
In response to agonist stimulation, the alphaIIbbeta3 integrin on platelets is converted to an active conformation that binds fibrinogen and mediates platelet aggregation. This process contributes to both normal hemostasis and thrombosis. Activation of alphaIIbbeta3 is believed to occur in part via engagement of the beta3 cytoplasmic tail with talin; however, the role of the alphaIIb tail and its potential binding partners in regulating alphaIIbbeta3 activation is less clear. We report that calcium and integrin binding protein 1 (CIB1), which interacts directly with the alphaIIb tail, is an endogenous inhibitor of alphaIIbbeta3 activation; overexpression of CIB1 in megakaryocytes blocks agonist-induced alphaIIbbeta3 activation, whereas reduction of endogenous CIB1 via RNA interference enhances activation. CIB1 appears to inhibit integrin activation by competing with talin for binding to alphaIIbbeta3, thus providing a model for tightly controlled regulation of alphaIIbbeta3 activation.  相似文献   

9.
The human calcium- and integrin-binding protein 1 (CIB1) plays important roles in various cellular functions. In this study, three other members of this protein family (CIB2-4: CIB2, CIB3, and CIB4) were purified and subsequently characterized using biophysical and structural approaches. As expected from sequence alignments, CIB2-4 were shown to bind calcium (Ca(2+)) and magnesium (Mg(2+)) ions. Binding of Ca(2+) or Mg(2+) ions changes the secondary structure of CIB2-4 and the exposure of hydrophobic surface area. Ca(2+) and Mg(2+) ions also stabilize the tertiary structures for CIB2 and CIB3. Through in vitro binding experiments, we show that CIB2 can interact with the integrin αIIb cytoplasmic domain and the integrin α7b membrane-proximal fragment. Fluorescence experiments using a 7-azatryptophan labeled peptide demonstrate that CIB2, CIB3, and CIB4 are binding partners for the integrin αIIb subunit, which suggests that they are potentially involved in regulating integrin αIIb subunit activation. The distinct responses of αIIb to the different CIB3 and CIB4 metal (Ca(2+) and Mg(2+)) binding states imply a potential connection between the calcium and integrin signaling pathways.  相似文献   

10.
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.  相似文献   

11.
Calmodulin (CaM) is a Ca(2+)-binding protein that functions as a ubiquitous Ca(2+)-signaling molecule, through conformational changes from the "closed" apo conformation to the "open" Ca(2+)-bound conformation. Mg(2+) also binds to CaM and stabilizes its folded structure, but the NMR signals are broadened by slow conformational fluctuations. Using the E104D/E140D mutant, designed to decrease the signal broadening in the presence of Mg(2+) with minimal perturbations of the overall structure, the solution structure of the Mg(2+)-bound form of the CaM C-terminal domain was determined by multidimensional NMR spectroscopy. The Mg(2+)-induced conformational change mainly occurred in EF hand IV, while EF-hand III retained the apo structure. The helix G and helix H sides of the binding sequence undergo conformational changes needed for the Mg(2+) coordination, and thus the helices tilt slightly. The aromatic rings on helix H move to form a new cluster of aromatic rings in the hydrophobic core. Although helix G tilts slightly to the open orientation, the closed conformation is maintained. The fact that the Mg(2+)-induced conformational changes in EF-hand IV and the hydrophobic core are also seen upon Ca(2+) binding suggests that the Ca(2+)-induced conformational changes can be divided into two categories, those specific to Ca(2+) and those common to Ca(2+) and Mg(2+).  相似文献   

12.
Skelemin is a large cytoskeletal protein critical for cell morphology. Previous studies have suggested that its two-tandem immunoglobulin C2-like repeats (SkIgC4 and SkIgC5) are involved in binding to integrin beta3 cytoplasmic tail (CT), providing a mechanism for skelemin to regulate integrin-mediated signaling and cell spreading. Using NMR spectroscopy, we have studied the molecular details of the skelemin IgC45 interaction with the cytoplasmic face of integrin alphaIIbbeta3. Here, we show that skelemin IgC45 domains form a complex not only with integrin beta3 CT but also, surprisingly, with the integrin alphaIIb CT. Chemical shift mapping experiments demonstrate that both membrane-proximal regions of alphaIIb and beta3 CTs are involved in binding to skelemin. NMR structural determinations, combined with homology modeling, revealed that SkIgC4 and SkIgC5 both exhibited a conserved Ig-fold and both repeats were required for effective binding to and attenuation of alphaIIbbeta3 cytoplasmic complex. These data provide the first molecular insight into how skelemin may interact with integrins and regulate integrin-mediated signaling and cell spreading.  相似文献   

13.
Calcium- and integrin-binding protein (CIB) is a novel member of the helix-loop-helix family of regulatory calcium-binding proteins which likely has a specific function in hemostasis through its interaction with platelet integrin alphaIIbbeta(3). The significant amino acid sequence homology between CIB and other regulatory calcium-binding proteins such as calmodulin, calcineurin B, and recoverin suggests that CIB may undergo a calcium-induced conformational change; however, the mechanism of calcium binding and the details of a structural change have not yet been investigated. Consequently, we have performed a variety of spectroscopic and microcalorimetric studies of CIB to determine its calcium binding characteristics, and the subsequent conformational changes that occur. Furthermore, we provide the first evidence for magnesium binding to CIB and determine the structural consequences of this interaction. Our results indicate that in the absence of any bound metal ions, apo-CIB adopts a folded yet highly flexible molten globule-like structure. Both calcium and magnesium binding induce conformational changes which stabilize both the secondary and tertiary structure of CIB, resulting in considerable increases in the thermal stability of the proteins. CIB was found to bind two Ca(2+) ions in a sequential manner with dissociation constants (K(d)) near 0.54 and 1.9 microM for sites EF-4 and EF-3, respectively. In contrast, CIB bound only one Mg(2+) ion to EF-3 with a K(d) near 120 microM. Together, our results suggest that CIB may exist in multiple structural and metal ion-bound states in vivo which may play a role in its regulation of target proteins such as platelet integrin.  相似文献   

14.
The affinity of integrin-ligand interaction is regulated extracellularly by divalent cations and intracellularly by inside-out signaling. We report here that the extracellular, membrane-proximal alpha/beta stalk interactions not only regulate cation-induced integrin activation but also play critical roles in propagating inside-out signaling. Two closely related integrins, alphaIIbbeta3 and alphaVbeta3, share high structural homology and bind to similar ligands in an RGD-dependent manner. Despite these structural and functional similarities, they exhibit distinct responses to Mn(2+). Although alphaVbeta3 showed robust ligand binding in the presence of Mn(2+), alphaIIbbeta3 showed a limited increase but failed to achieve full activation. Swapping alpha stalk regions between alphaIIb and alphaV revealed that the alpha stalk, but not the ligand-binding head region, was responsible for the difference. A series of alphaIIb/alphaV domain-swapping chimeras were constructed to identify the responsible domain. Surprisingly, the minimum component required to render alphaIIbbeta3 susceptible to Mn(2+) activation was the alphaV calf-2 domain, which does not contain any divalent cation-binding sites. The calf-2 domain makes interface with beta epidermal growth factor 4 and beta tail domain in three-dimensional structure. The effect of calf-2 domain swapping was partially reproduced by mutating the specific amino acid residues in the calf-2/epidermal growth factor 4-beta tail domain interface. When this interface was constrained by an artificially introduced disulfide bridge, the Mn(2+)-induced alphaVbeta3-fibrinogen interaction was significantly impaired. Notably, a similar disulfide bridge completely abrogated fibrinogen binding to alphaIIbbeta3 when alphaIIbbeta3 was activated by cytoplasmic tail truncation to mimic inside-out signaling. Thus, disruption/formation of the membrane-proximal alpha/beta stalk interface may act as an on/off switch that triggers integrin-mediated bidirectional signaling.  相似文献   

15.
A transmembrane domain heterodimer, acting in concert with a membrane-proximal cytoplasmic domain clasp, is thought to maintain integrins in a low affinity state. To test whether helix-helix interactions between the alphaIIb and beta3 transmembrane domains regulate the activity of integrin alphaIIbbeta3, we synthesized a soluble peptide corresponding to the alphaIIb transmembrane domain, designated alphaIIb-TM, and we studied its ability to affect alphaIIbbeta3 activity in human platelets. alphaIIb-TM was alpha-helical in detergent micelles and phospholipid vesicles, readily inserted into membrane bilayers, bound to intact purified alphaIIbbeta3, and specifically associated with the transmembrane domain of alphaIIb, rather than the transmembrane domains of beta3, alpha2, and beta1, other integrin subunits present in platelets. When added to suspensions of gel-filtered platelets, alphaIIb-TM rapidly induced platelet aggregation that was not inhibited by preincubating platelets with the prostaglandin E(1) or the ADP scavenger apyrase but was prevented by the divalent cation chelator EDTA. Furthermore, alphaIIb-TM induced fibrinogen binding to platelets but not the binding of osteopontin, a specific ligand for platelet alphavbeta3. The peptide also induced fibrinogen binding to recombinant alphaIIbbeta3 expressed by Chinese hamster ovary cells, confirming that its effect was independent of platelet signal transduction. Finally, transmission electron microscopy of purified alphaIIbbeta3 revealed that alphaIIb-TM shifted the integrin from a closed configuration with its stalks touching to an open configuration with separated stalks. These observations demonstrate that transmembrane domain interactions regulate integrin function in situ and that it is possible to target intra-membranous protein-protein interactions in a way that can have functional consequences.  相似文献   

16.
We report the effects of binding of Mg(2+) to the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. CBD2 is known to bind two Ca(2+) ions using its Ca(2+)-binding sites I and II. Here, we show by nuclear magnetic resonance (NMR), circular dichroism, isothermal titration calorimetry, and mutagenesis that CBD2 also binds Mg(2+) at both sites, but with significantly different affinities. The results from Mg(2+)-Ca(2+) competition experiments show that Ca(2+) can replace Mg(2+) from site I, but not site II, and that Mg(2+) binding affects the affinity for Ca(2+). Furthermore, thermal unfolding circular dichroism data demonstrate that Mg(2+) binding stabilizes the domain. NMR chemical shift perturbations and (15)N relaxation data reveal that Mg(2+)-bound CBD2 adopts a state intermediate between the apo and fully Ca(2+)-loaded forms. Together, the data show that at physiological Mg(2+) concentrations CBD2 is loaded with Mg(2+) preferentially at site II, thereby stabilizing and structuring the domain and altering its affinity for Ca(2+).  相似文献   

17.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

18.
Regulation of integrin activation occurs by specific interactions among cytoplasmic proteins and integrin alpha and beta cytoplasmic tails. We report that the catalytic subunit of protein phosphatase 1 (PP1c) constitutively associates with the prototypic integrin alphaIIbbeta3 in platelets and in cell lines overexpressing the integrin. PP1c binds directly to the cytoplasmic domain of integrin alphaIIb subunit containing a conserved PP1c binding motif 989KVGF992. Anchored PP1c is inactive, while thrombin-induced platelet aggregation or fibrinogen-alphaIIbbeta3 engagement caused PP1c dissociation and concomitant activation as revealed by dephosphorylation of PP1c substrate, myosin light chain. Inhibition of ligand binding to activated alphaIIbbeta3 blocks PP1c dissociation and represses PP1c activation. These studies reveal a previously unrecognized role for integrins whereby the alpha subunit cytoplasmic tail localizes the machinery for initiating and temporally maintaining the regulatory signaling activity of a phosphatase.  相似文献   

19.
The FRQ1 gene is essential for growth of budding yeast and encodes a 190-residue, N-myristoylated (myr) calcium-binding protein. Frq1 belongs to the recoverin/frequenin branch of the EF-hand superfamily and regulates a yeast phosphatidylinositol 4-kinase isoform. Conformational changes in Frq1 due to N-myristoylation and Ca(2+) binding were assessed by nuclear magnetic resonance (NMR), fluorescence, and equilibrium Ca(2+)-binding measurements. For this purpose, Frq1 and myr-Frq1 were expressed in and purified from Escherichia coli. At saturation, Frq1 bound three Ca(2+) ions at independent sites, which correspond to the second, third, and fourth EF-hand motifs in the protein. Affinity of the second site (K(d) = 10 microM) was much weaker than that of the third and fourth sites (K(d) = 0.4 microM). Myr-Frq1 bound Ca(2+) with a K(d)app of 3 microM and a positive Hill coefficient (n = 1.25), suggesting that the N-myristoyl group confers some degree of cooperativity in Ca(2+) binding, as seen previously in recoverin. Both the NMR and fluorescence spectra of Frq1 exhibited very large Ca(2+)-dependent differences, indicating major conformational changes induced upon Ca(2+) binding. Nearly complete sequence-specific NMR assignments were obtained for the entire carboxy-terminal domain (residues K100-I190). Assignments were made for 20% of the residues in the amino-terminal domain; unassigned residues exhibited very broad NMR signals, most likely due to Frq1 dimerization. NMR chemical shifts and nuclear Overhauser effect (NOE) patterns of Ca(2+)-bound Frq1 were very similar to those of Ca(2+)-bound recoverin, suggesting that the overall structure of Frq1 resembles that of recoverin. A model of the three-dimensional structure of Ca(2+)-bound Frq1 is presented based on the NMR data and homology to recoverin. N-myristoylation of Frq1 had little or no effect on its NMR and fluorescence spectra, suggesting that the myristoyl moiety does not significantly alter Frq1 structure. Correspondingly, the NMR chemical shifts for the myristoyl group in both Ca(2+)-free and Ca(2+)-bound myr-Frq1 were nearly identical to those of free myristate in solution, indicating that the fatty acyl chain is solvent-exposed and not sequestered within the hydrophobic core of the protein, unlike the myristoyl group in Ca(2+)-free recoverin. Subcellular fractionation experiments showed that both the N-myristoyl group and Ca(2+)-binding contribute to the ability of Frq1 to associate with membranes.  相似文献   

20.
The Wiskott-Aldrich syndrome (WAS) is an X-chromosome-linked immunodeficiency disorder. The most common symptom seen in WAS patients is bleeding. One of the main causes of bleeding is defective platelet aggregation. The causative gene of WAS encodes WAS protein (WASP). Here, we show that WASP binds to the calcium- and integrin-binding protein (CIB) in platelets. CIB was originally identified as a protein binding to the alphaIIb cytoplasmic tail of platelet integrin alphaIIb beta3, which has a primary role in platelet aggregation. We also show that the WASP-CIB complex is important in alphaIIb beta3-mediated cell adhesion, and that in patients mutant forms of WASP are expressed at reduced levels or show lower affinities for CIB than wild-type WASP. Our results indicate that impaired complex formation between mutant WASPs and CIB reduces alphaIIb beta3-mediated cell adhesion and causes defective platelet aggregation, resulting in bleeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号