首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The thermal denaturation of a recombinant human gamma-interferon has been studied as a function of pH in the range from 2 to 10 and buffer concentration in the range from 5 to 100 mM by differential scanning calorimetry, circular dichroism, fluorescence, 1H NMR, and biological activity measurements. The thermal transitions are irreversible at high buffer concentrations at all pH values studied, although they are reversible between pH 3.5 and 5.4 at low buffer concentrations. The denaturation enthalpy, DeltaH(Tm), at denaturation temperature Tm was a function of both Tm and the buffer concentration, and this resulted in heat capacity changes decreasing with buffer concentration. When the denaturation enthalpies were corrected for Tm dependence, they did not appear to change versus pH. The denaturation entropies, however, appeared to decrease with pH, leading to a small but appreciable increase in the stability of the protein with pH. The difference between the number of moles of protons stoichiometrically bound to a mole of protein in the native and thermally denatured state, was calculated from the variation of Tm versus pH at each buffer concentration. The values obtained appear to depend on pH alone rather than upon temperature or buffer concentration, a result which agrees with the invariance of the denaturation enthalpies with pH. This dependence was fitted to the titration curve of a group with a pK of 5.4.  相似文献   

3.
4.
5.
6.
Wild-type human cystatin C is directly involved in pathological fibrils formation, leading to hemorrhage, dementia and eventually death of people suffering from cerebral amyloid angiopathy. Some studies on cystatin C oligomerization have been already done but some points are still unclear. In order to learn more about this important process, we have investigated thermal and chemical (guanidine hydrochloride-induced) denaturation of human cystatin C. Studies performed using tryptophan fluorescence, calorimetry, circular dichroism and Fourier transform infrared spectroscopy demonstrate that neither chemical nor thermal denaturation of hCC are simple two-state events. One recognized intermediate form was dimeric cystatin C, whose appearance was preceded mainly by changes in the L2 binding loop. The other form occurred only in the chemical denaturation process and was characterized by partially recovered interactions maintaining the protein tertiary structure. Our studies also strongly indicate that the -structural motif of cystatin C is directly implicated in formation of temperature-induced aggregates.Abbreviations Gdn.HCl guanidine hydrochloride - hCC human cystatin C  相似文献   

7.
8.
Developmental genetics of the human haemoglobins.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

9.
Thermal denaturation of nucleosomal core particles.   总被引:32,自引:18,他引:14       下载免费PDF全文
Thermal denaturation of very homogeneous preparations of core particles from chicken erythrocyte chromatin is studied by several techniques. The change in absorbance, which is very closely paralleled by changes in heat capacity, which is very closely paralleled by changes in heat capacity, is a biphasic process with inflexions at 60 degrees C and 74 degrees C. In contrast, isolated DNA of the same length denatures in a single transition around 44 degrees C. Monitoring the circular dichroism of the cores during thermal denaturation reveals biphasic changes in the secondary structure of the DNA, preceding the base unstacking by 10 degrees C in the first and 3 degrees C in the second phase. However, measurable alterations in the secondary structure of the histones are confined to the second phase with a melting temperature at 71 degrees C. Increase in the ionic strength of the buffer from 1 mM to 10 mM leads to almost monophasic melting curves as measured by absorbance and CD, while not causing any measurable conformational changes at room temperature. The melting of core particles is interpreted as a denaturation of about 40 base pairs in the first phase, followed by a massive breakdown of the native structure of a tight histone-DNA complex, which frees the remaining 100 base pairs for unstacking.  相似文献   

10.
11.
Thermal denaturation of ribosomes   总被引:8,自引:0,他引:8  
M Tal 《Biochemistry》1969,8(1):424-435
  相似文献   

12.
Thermal denaturation of Japanese-radish peroxidase [EC 1.11.1.7] was investigated with respect to its spectrophotometric properties and effect on the enzymatic activity. Inactivation of the peroxidase occurred at temperatures higher than 60degrees and involved three processes, i.e., dissociation of protohemin from the holoperoxidase, a conformation change in the apperoxidase, and the modification or degradation of protohemin. The splitting process of protohemin from holoperoxidase as followed by the change in the absorption spectrum at high temperatures coincided with the degrease in the activity, and it was found to be at least biphasic. The regeneration of peroxidase on cooling to room temperature was essentially reversible at neutral pH, while at pH 5 and pH 9 these processes were irreversible. The irreversibility at acidic pH was mainly due to an irreversible change in the conformation of the apoenzyme. The difference spectrum of heat-treated apoperoxidase exhibited a denaturation blueshift with negative maxima at 287 and 294 nm, and the total protein fluorescence quantum yield. qprotein, increased by 20% compared to that of the untreated apoenzyme. On the other hand, the irreversibility at alkaline pH was largely attributable to the modification of protohemin. Apoperoxidase was more resistnat to heat denaturation but the modification or degradation of protohemin in heated enzyme was greater at alkaline pH than at acidic pH. The pyridine-ferrohemochrome spectrum of peroxidase exhibited slight shifts of the maxima of the alpha-band to shorter wavelength on heat treatment, and the paper chromatogram showed the presence of a new derivative other than protohemin. The modified product is probably (2(4)-vinyl-4(2)-hydroxyethyldeuterohemin.  相似文献   

13.
14.
15.
Thermal denaturation studies as a function of pH were carried out on wild-type iso-1-cytochrome c and three variants of this protein at the solvent-exposed position 73 of the sequence. By examining the enthalpy and Tm at various pH values, the heat capacity increment (delta Cp), which is dominated by the degree of change in nonpolar hydration upon protein unfolding, was found for the wild type where lysine 73 is normally present and for three variants. For the Trp 73 variant, the delta Cp value (1.15 +/- 0.17 kcal/mol K) decreased slightly relative to wild-type iso-1-cytochrome c (1.40 +/- 0.06 kcal/mol K), while for the Ile 73 (1.65 +/- 0.07 kcal/mol K) and the Val 73 (1.50 +/- 0.06 kcal/mol K) variants, delta Cp increased slightly. In previous studies, the Trp 73, Ile 73, and Val 73 variants have been shown to have decreased m-values in guanidine hydrochloride denaturations relative to the wild-type protein (Hermann L, Bowler BE, Dong A, Caughey WS. 1995. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: Investigation of aliphatic residues. Biochemistry 34:3040-3047). Both the m-value and delta Cp are related to the change in solvent exposure upon unfolding and other investigators have shown a correlation exists between these two parameters. However, for this subset of variants of iso-1-cytochrome c, a lack of correlation exists which implies that there may be basic differences between the guanidine hydrochloride and thermal denaturations of this protein. Spectroscopic data are consistent with different denatured states for thermal and guanidine hydrochloride unfolding. The different response of m-values and delta Cp for these variants will be discussed in this context.  相似文献   

16.
17.
Thermal denaturation of staphylococcal nuclease   总被引:5,自引:0,他引:5  
The fully reversible thermal denaturation of staphylococcal nuclease in the absence and presence of Ca2+ and/or thymidine 3',5'-diphosphate (pdTp) from pH 4 to 8 has been studied by high-sensitivity differential scanning calorimetry. In the absence of ligands, the denaturation is accompanied by an enthalpy change of 4.25 cal g-1 and an increase in specific heat of 0.134 cal K-1 g-1, both of which are usual values for small globular proteins. The temperature (tm) of maximal excess specific heat is 53.4 degrees C. Each of the ligands, Ca2+ and pdTp, by itself has important effects on the unfolding of the protein which are enhanced when both ligands are present. Addition of saturating concentrations of these ligands raises the denaturational enthalpy to 5.74 cal g-1 in the case of Ca2+ and to 6.72 cal g-1 in the case of pdTp. The ligands raise the tm by as much as 11 degrees C depending on ligand concentration. From the variation of the denaturational enthalpies with ligand concentrations, binding constants at 53 degrees C equal to 950 M-1 and 1.4 X 10(4) M-1 are estimated for Ca2+ and pdTp, respectively, and from the enthalpies at ligand saturation, binding enthalpies at 53 degrees C of -15.0 and -19.3 kcal mol-1.  相似文献   

18.
19.
20.
The thermal denaturation of DNA from cell lines extensively substituted with bromodeoxyuridine has been examined spectrophotometrically over a wide range in ionic strength and by thermal elution from hydroxyapatite columns. BrdU substitution stabliizes DNA at all ionic strengths between 7.5 mM and 1350 mM potassium ion concentration, although a plot of log ionic strength vs Tm deviates from linearity above 150 mM. This nonlinearity is most pronounced with BrdU-substituted DNAs, resulting in a lowered delta Tm between unsubstituted and substituted DNA with increasing ionic strength. DMSO is shown to decrease the Tm of both unsubstituted and BrdU-substituted DNA equally, at a rate of .5 degrees C per 1% DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号