首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic cells specific for Toxoplasma gondii-infected cells were detected in the peripheral blood leukocytes from a patient with acute toxoplasmosis. The cytotoxicity was mediated by CD5+, CD4-, CD8+ cells. The cytotoxic T cells lysed Toxoplasma-infected target cells with HLA class I restriction. Two types of T cell clones were established from peripheral blood leukocytes of a patient with chronic toxoplasmosis; one was a CD5+, CD4-, CD8+ cytotoxic cell specific for Toxoplasma-infected cells, and the other was a CD5+, CD4+, CD8- proliferative cell that responded to Toxoplasma antigen. Toxoplasma-infected cell-specific cytotoxic cloned T cells recognize the infected target cells in the context of the HLA class I molecules, and the CD8 molecule was involved in the cytotoxicity. Toxoplasma antigen-specific proliferative cloned T cells were stimulated by Toxoplasma antigen-pulsed or Toxoplasma-infected cells in conjunction with HLA-DR molecule on the target cells. Thus, antigen presentation by Toxoplasma-infected cells for activation of both cytotoxic and proliferative T cells has been demonstrated.  相似文献   

2.
Antigen processing and CD4+ T cell depletion in AIDS   总被引:3,自引:0,他引:3  
R N Germain 《Cell》1988,54(4):441-444
  相似文献   

3.
It was previously shown that cells die with increased cytosolic ATP after stimulation with apoptotic inducers including staurosporine (STS). To identify the source of apoptotic ATP elevation, we monitored, in real time, the cytosolic ATP level in luciferase-expressing HeLa cells. A mitochondrial uncoupler or a respiration chain inhibitor was found to decrease cytosolic ATP by about 50%. However, even when mitochondrial ATP synthesis was suppressed, STS induced a profound elevation of intracellular ATP. In contrast, the STS-induced ATP increase was prevented by any of three inhibitors of the glycolytic pathway: 2-deoxyglucose, iodoacetamide, and NaF. The STS effect strongly depended on intracellular calcium and was mimicked by a calcium ionophore. We conclude that Ca(2+)-dependent activation of anaerobic glycolysis, but not aerobic mitochondrial oxidative phosphorylation, is responsible for the STS-induced elevation of ATP in apoptotic HeLa cells.  相似文献   

4.
Several classes of anergic T cells are capable of suppressing naive T cell proliferation and thereby limiting immune responses. Activated T cells, although not anergic, are transiently refractory to restimulation with Ag. We examine in this study whether activated refractory murine T cells can also suppress naive T cell responses. We find that they can, and that they exhibit many of the suppressive properties of anergic T cells. The activated cells strongly diminish Ag-mediated T cell proliferation, an activity that correlates with their refractory period. Suppression is independent of APC numbers and requires cell contact or proximity. Naive T cells stimulated in the presence of activated refractory cells up-regulate CD25 and CD69, but fail to produce IL-2. The addition of IL-2 to culture medium, however, does not prevent the suppression, which is therefore not solely due to the absence of this growth factor. Persistence of the suppressor cells is also not essential. T cells stimulated in their presence and then isolated from them and cultured do not divide. The suppressive cells, however, do not confer a refractory or anergic state on the target T lymphocytes, which can fully respond to antigenic stimulation if removed from the suppressors. Our results therefore provide evidence that activated T cells act as transient suppressor cells, severely constraining bystander T cell stimulation and thereby restricting their response. These results have potentially broad implications for the development and regulation of immune responses.  相似文献   

5.
Bordetella pertussis adenylate cyclase (CyaA) is an invasive bacterial toxin that delivers its N-terminal catalytic domain into the cytosol of eukaryotic cells bearing the alpha(M)beta(2) integrin (CD11b/CD18), such as myeloid dendritic cells. This allows use of engineered CyaA for targeted delivery of CD8(+) T cell epitopes into the MHC class I pathway of APC and induction of robust and protective cytotoxic responses. In this study, we demonstrate that CyaA can efficiently codeliver both a CD8(+) T cell epitope (OVA(257-264)) and a CD4(+) T cell epitope (MalE(100-114)) into, respectively, the conventional cytosolic or endocytic routes of processing of murine bone marrow-derived dendritic cells. Upon CyaA delivery, a strong potentiation of the MalE(100-114) CD4(+) T cell epitope presentation is observed as compared with the MalE protein, which depends on CyaA interaction with its CD11b receptor and its subsequent clathrin-mediated endocytosis. In vivo, CyaA induces strong and specific Th1 CD4(+) and CD8(+) T cell responses against, respectively, the MalE(100-114) and OVA(257-264) epitopes. These results underscore the potency of CyaA for design of new vaccines.  相似文献   

6.
APCs process heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC molecules, but the ability of HSPs to contribute chaperoned peptides for class II MHC (MHC-II) Ag processing and presentation is unclear. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-II presentation, as detected by T hybridoma cells. Bacterial HSPs enhanced MHC-II presentation only if peptide was complexed to the HSP, suggesting that the key HSP function was enhanced delivery or processing of chaperoned peptide Ag rather than generalized enhancement of APC function. HSP-enhanced processing was intact in MyD88 knockout cells, which lack most TLR signaling, further suggesting the effect was not due to TLR-induced induction of accessory molecules. Bacterial HSPs enhanced uptake of peptide, which may contribute to increased MHC-II presentation. In addition, HSPs enhanced binding of peptide to MHC-II molecules at pH 5.0 (the pH of vacuolar compartments), but not at pH 7.4, indicating another mechanism for enhancement of MHC-II Ag processing. Bacterial HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD4+ T cells.  相似文献   

7.
8.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

9.
In vivo studies have shown that regulatory CD4(+) T cells regulate conventional CD4(+) T cell responses to self- and environmental Ags. However, it remains unclear whether regulatory CD4(+) T cells control CD8(+) T cell responses to self, directly, or indirectly by decreasing available CD4(+) T cell help. We have developed an experimental mouse model in which suppressive and helper T cells cannot mediate their functions. The mouse chimeras generated were not viable and rapidly developed multiple organ autoimmunity. These features were correlated with strong CD8(+) T cell activation and accumulation in both lymphoid and nonlymphoid organs. In vivo Ab treatment and secondary transfer experiments demonstrated that regulatory CD4(+) T cells play an important direct role in the prevention of peripheral CD8(+) T cell-mediated autoimmunity.  相似文献   

10.
Generation of myelin antigen-specific T cells is a major event in neuroimmune responses that causes demyelination. The antigen-priming of T cells and its location is important in chronic and acute inflammation. In autoimmune multiple sclerosis, the effector T cells are considered to generate in periphery. However, the reasons for chronic relapsing-remitting events are obscure. Considering mechanisms, a feasible aim of research is to investigate the role of antigen-primed T cells in lupus cerebritis. Last thirty years of investigations emphasize the relevance of microglia and infiltrated dendritic cells/macrophages as antigen presenting cells in the central nervous system. The recent approach towards circulating B-lymphocytes is an important area in the context. Here, we analyze the existing findings on antigen presentation in the central nervous system. The aim is to visualize signaling events of myelin antigen presentation to T cells and lead to the strategy of future goals on immunotherapy research.  相似文献   

11.
This study describes the inhibitory effect exerted by activated CD8+ T cells on the replication of HIV in naturally infected CD4+ T cells. Highly purified CD4+ T cells from asymptomatic HIV seropositive individuals were stimulated with anti-TCR mAb-coated beads in the presence of IL-2. HIV was subsequently reproducibly isolated in cell supernatants from all study participants (53 cultures from 42 individuals). Both autologous and allogeneic CD8+ T cells from asymptomatic HIV seropositive and healthy HIV seronegative individuals inhibited the replication of HIV in these cultures in a dose-dependent manner. CD8+ T cells from patients with AIDS showed reduced or no such inhibitory activity. The inhibitory effect was not dependent on direct cell-cell contact: an inhibitory effect was exerted by CD8+ T cells across a semipermeable membrane, and an inhibitory activity was also exerted by the cell-free supernatants from activated CD8+ T cells. These results suggest that activated CD8+ T cells secrete a soluble inhibitor of HIV replication.  相似文献   

12.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

13.
14.
We demonstrated previously the presence of an Ia+ (OX-6+) antigen-presenting cell within the rat T cell fraction that is capable of presenting antigen to antigen-primed OX-6-T cells. This antigen-presenting cell (T-APC) reacted with the monoclonal antibodies W3/25 and W3/13, which is known to react mainly with rat T cells. Further characterization of the T-APC indicated that the cell also reacted with the monoclonal antibody OX-19, which is highly specific for rat T cells. Moreover, the antigen-presenting function of the T-APC was sensitive to treatment with mitomycin C or gamma-irradiation (2000 rad). Under similar conditions, antigen presentation by partially purified dendritic cells or macrophages was totally resistant to these treatments. The antigen-presenting activity of gamma-irradiated T-APC was not reconstituted by the addition of the lymphokines IL 1, IL 2, or Con A supernatants. Although unirradiated T-APC were able to stimulate an MLR response, this function was also sensitive to gamma-irradiation, whereas the MLR-stimulating ability of macrophages and dendritic cells was resistant to gamma-irradiation. These data indicate that Ia+ T cells from the rat are capable of presenting antigen to antigen-primed T lymphocytes and that, in contrast to antigen presentation by macrophages and dendritic cells, the function of T-APC is gamma-radiation sensitive.  相似文献   

15.
Peptide specificity of thymic selection of CD4+CD25+ T cells.   总被引:21,自引:0,他引:21  
The CD4(+)CD25(+) regulatory T cells can be found in the thymus, but their need to undergo positive and negative selection has been questioned. Instead, it has been hypothesized that CD4(+)CD25(+) cells mature following TCR binding to MHC backbone, to low abundant MHC/peptide complexes, or to class II MHC loaded with peripheral autoantigens. In all these circumstances, processes that are distinct from positive and negative selection would govern the provenance of CD4(+)CD25(+) cells in the thymus. By comparing the development of CD4(+)CD25(-) and CD4(+)CD25(+) cells in mice expressing class II MHC molecules bound with one or many peptide(s), we show that the CD4(+)CD25(+) cells appear during natural selection of CD4(+) T cells. The proportion of CD4(+)CD25(+) cells in the population of CD4(+) thymocytes remains constant, and their total number reflects the complexity of selecting class II MHC/peptide complexes. Hence, thymic development of CD4(+)CD25(+) cells does not exclusively depend on the low-density, high-affinity MHC/peptide complexes or thymic presentation of peripheral self-Ags, but, rather, these cells are selected as a portion of the natural repertoire of CD4(+) T cells. Furthermore, while resistant to deletion mediated by endogenous superantigen(s), these cells were negatively selected on class II MHC/peptide complexes. We postulate that while the CD4(+)CD25(+) thymocytes are first detectable in the thymic medulla, their functional commitment occurs in the thymic cortex.  相似文献   

16.
17.
Murine CD4+ T cells can be subdivided into naive and memory T cells based on surface phenotype, on recall response to Ag, and on differences in activation requirements. Furthermore, several studies have shown that two signals are required for CD4+ T cell activation; one signal is provided by occupancy of the TCR and the other signal is provided by the APC. In this report, analysis of naive and memory CD4 T cells, separated on the basis of CD45 isoform expression, has shown that their requirements for two signals differ. Activation of memory CD4 T cells to proliferate and secrete IL-2/IL-4 only required occupancy of the TCR complex, whereas activation of naive CD4 T cells required an APC-derived signal as well. Moreover, the signal induced by anti-CD3 antibodies differs from the signal provided by anti-V beta cross-linking of the TCR because both antibodies activate memory CD4 T cells but only anti-CD3 activates naive CD4 T cells. Together these data suggest that the consequence of stimulation through the TCR/CD3 signal complex differs between memory and naive CD4 T cells.  相似文献   

18.
A CD8+ T cell lymphocytosis in the peripheral blood is associated with the establishment of latency following intranasal infection with murine gammaherpesvirus-68. Remarkably, a large percentage of the activated CD8+ T cells of mice expressing different MHC haplotypes express V beta 4+ TCR. Identification of the ligand driving the V beta 4+CD8+ T cell activation remains elusive, but there is a general correlation between V beta 4+CD8+ T cell stimulatory activity and establishment of latency in the spleen. In the current study, the role of CD4+ T cells in the V beta 4+CD8+ T cell expansion has been addressed. The results show that CD4+ T cells are essential for expansion of the V beta 4+CD8+ subset, but not other V beta subsets, in the peripheral blood. CD4+ T cells are required relatively late in the antiviral response, between 7 and 11 days after infection, and mediate their effect independently of IFN-gamma. Assessment of V beta 4+CD8+ T cell stimulatory activity using murine gammaherpesvirus-68-specific T cell hybridomas generated from latently infected mice supports the idea that CD4+ T cells control levels of the stimulatory ligand that drives the V beta 4+CD8+ T cells. As V beta 4+CD8+ T cell expansion also correlates with levels of activated B cells, these data raise the possibility that CD4+ T cell-mediated B cell activation is required for optimal expression of the stimulatory ligand. In addition, in cases of low ligand expression, there may also be a direct role for CD4+ T cell-mediated help for V beta 4+CD8+ T cells.  相似文献   

19.
Cultured murine CD4+ T cells have been shown to differentiate into IL-2 or IL-4-producing subsets. The factors responsible for the development of CD4+ T cells which produce IL-2 but not IL-4 and cells capable of producing IL-4 but not IL-2 are unknown. Here we describe a system that allows the controlled induction of IL-2- or IL-4-producing T cells after one single round of activation. Freshly isolated CD8-depleted T cells were activated with various polyclonal T cell activators for 48 h, washed, and then expanded under different conditions. IL-2 and IL-4 production were induced by restimulation of T cells and were measured with CTLL cells that respond to both cytokines and mAb to IL-2 and IL-4. T cells produced mainly IL-2 and small amounts of IL-4 when restimulated after expansion culture for 12 days with rIL-2 alone. However, after expansion for 12 days in the presence of rIL-2 plus Con A, we observed a 30- to 100-fold up-regulation of IL-4 activity and a 100-fold down-regulation of IL-2 when assessed by responses of CTLL cells incubated with the supernatant of restimulated T cells and by responses of CTLL cells cocultured with restimulated cells. An increase of IL-4 and decrease of IL-2 was also observed when the results were based on the cell numbers at the beginning of the expansion culture. The induction of IL-4 and the down-regulation of IL-2 1) were not reproduced with alpha-methyl-mannoside-treated supernatant of Con A-stimulated spleen cells, 2) were not dependent on the presence of large numbers of APC, 3) did not result from differential consumption of lymphokines after restimulation, 4) were not due to a difference in the time course of IL-2 or IL-4 release in either T cell population, and 5) were obtained regardless of the agents used to activate or to restimulate the T cells. Because Con A remained detectable on the T cell surface and because expansion of activated T cells with IL-2 plus Con A for several days was necessary, our results indicate that mainly IL-4-producing CD4+ T cells can be induced by prolonged engagement of T cell surface molecules.  相似文献   

20.
CD4+CD25+ regulatory T cells in HIV infection   总被引:9,自引:0,他引:9  
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号