首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conflicting phylogenetic signals at the base of the metazoan tree   总被引:6,自引:0,他引:6  
A phylogenetic framework is essential for under-standing the origin and evolution of metazoan development. Despite a number of recent molecular studies and a rich fossil record of sponges and cnidarians, the evolutionary relationships of the early branching metazoan groups to each other and to a putative outgroup, the choanoflagellates, remain uncertain. This situation may be the result of the limited amount of phylogenetic information found in single genes and the small number of relevant taxa surveyed. To alleviate the effect of these analytical factors in the phylogenetic recons-truction of early branching metazoan lineages, we cloned multiple protein-coding genes from two choanoflagellates and diverse sponges, cnidarians, and a ctenophore. Comparisons of sequences for alpha-tubulin, beta-tubulin, elongation factor 2, HSP90, and HSP70 robustly support the hypothesis that choanoflagellates are closely affiliated with animals. However, analyses of single and concatenated amino acid sequences fail to resolve the relationships either between early branching metazoan groups or between Metazoa and choano-flagellates. We demonstrate that variable rates of evolution among lineages, sensitivity of the analyses to taxon selection, and conflicts in the phylogenetic signal contained in different amino acid sequences obscure the phylogenetic associations among the early branching Metazoa. These factors raise concerns about the ability to resolve the phylogenetic history of animals with molecular sequences. A consensus view of animal evolution may require investigations of genome-scale characters.  相似文献   

2.
Reconstructions of phylogenetic relationships in the flowering plant family Rubiaceae have up until now relied heavily on single‐ or multi‐gene data, primarily from the plastid compartment. With the availability of cost‐ and time‐efficient techniques for generating complete genome sequences, the opportunity arises to resolve some of the relationships that, up until now, have proven problematic. Here, we contribute new data from complete 58 plastid genome sequences, representing 55 of the currently 65 recognized tribes of the Rubiaceae. Also contributed are new data from the nuclear rDNA cistrons for corresponding taxa. Phylogenetic analyses are conducted on two plastid data sets, one including data from the protein coding genes only, and a second where protein coding data are combined with non‐coding regions, and on a nuclear rDNA data set. Our results clearly show that simply adopting a “more characters” approach does not resolve the relationships in the Rubiaceae. More importantly, we identify conflicting phylogenetic signals in the data. Analyses of the same plastid data, treated as nucleotides or as codon‐degenerated data, resolve and support conflicting topologies in the subfamily Cinchonoideae. As these analyses use the same data, we interpret the conflict to result from erroneous assumptions in the models used to reconstruct our phylogenies. Conflicting signals are also identified in the analyses of the plastid versus the nuclear rDNA data sets. These analyses use data from different genomic compartments, with different inheritance patterns, and we interpret the conflicts as representing “real” conflicts, reflecting biological processes of the past.  相似文献   

3.
Dioecious white campion Silene latifolia has sex chromosomal sex determination, with homogametic (XX) females and heterogametic (XY) males. This species has become popular in studies of sex chromosome evolution. However, the lack of genes isolated from the X and Y chromosomes of this species is a major obstacle for such studies. Here, I report the isolation of a new sex-linked gene, Slss, with strong homology to spermidine synthase genes of other species. The new gene has homologous intact copies on the X and Y chromosomes (SlssX and SlssY, respectively). Synonymous divergence between the SlssX and SlssY genes is 4.7%, and nonsynonymous divergence is 1.4%. Isolation of a homologous gene from nondioecious S. vulgaris provided a root to the gene tree and allowed the estimation of the silent and replacement substitution rates along the SlssX and SlssY lineages. Interestingly, the Y-linked gene has higher synonymous and nonsynonymous substitution rates. The elevated synonymous rate in the SlssY gene, compared with SlssX, confirms our previous suggestion that the S. latifolia Y chromosome has a higher mutation rate, compared with the X chromosome. When differences in silent substitution rate are taken into account, the Y-linked gene still demonstrates significantly faster accumulation of nonsynonymous substitutions, which is consistent with the theoretical prediction of relaxed purifying selection in Y-linked genes, leading to the accumulation of nonsynonymous substitutions and genetic degeneration of the Y-linked genes.  相似文献   

4.
In the plant genus Silene, separate sexes and sex chromosomes are believed to have evolved twice. Silene species that are wholly or largely hermaphroditic are assumed to represent the ancestral state from which dioecy evolved. This assumption is important for choice of outgroup species for inferring the genetic and chromosomal changes involved in the evolution of dioecy, but is mainly based on data from a single locus (ITS). To establish the order of events more clearly, and inform outgroup choice, we therefore carried out (i) multi-nuclear-gene phylogenetic analyses of 14 Silene species (including 7 hermaphrodite or gynodioecious species), representing species from both Silene clades with dioecious members, plus a more distantly related outgroup, and (ii) a BayesTraits character analysis of the evolution of dioecy. We confirm two origins of dioecy within this genus in agreement with recent work on comparing sex chromosomes from both clades with dioecious species. We conclude that sex chromosomes evolved after the origin of Silene and within a clade that includes only S. latifolia and its closest relatives. We estimate that sex chromosomes emerged soon after the split with the ancestor of S. viscosa, the probable closest non-dioecious S. latifolia relative among the species included in our study.  相似文献   

5.
The action of natural selection is expected to reduce the effective population size of a nonrecombining chromosome, and this is thought to be the chief factor leading to genetic degeneration of Y-chromosomes, which cease recombining during their evolution from ordinary chromosomes. Low effective population size of Y chromosomes can be tested by studying DNA sequence diversity of Y-linked genes. In the dioecious plant, Silene latifolia, which has sex chromosomes, one comparison (SlX1 vs. SlY1) indeed finds lower Y diversity compared with the homologous X-linked gene, and one Y-linked gene with no X-linked homologue has lower species-wide diversity than a homologous autosomal copy (SlAp3Y vs. SlAp3A). To test whether this is a general pattern for Y-linked genes, we studied two further recently described X and Y homologous gene pairs in samples from several populations of S. latifolia and S. dioica. Diversity is reduced for both Y-linked genes, compared with their X-linked homologues. Our new data are analysed to show that the low Y effective size cannot be explained by different levels of gene flow for the X vs. the Y chromosomes, either between populations or between these closely related species. Thus, all four Y-linked genes that have now been studied in these plants (the two studied here, and two previously studied genes, have low diversity). This supports other evidence for an ongoing degeneration process in these species.  相似文献   

6.
Among the variety of breeding systems developed by flowering plants, those based on heteromorphic sex chromosomes are the most intellectually challenging in evolutionary terms. This is because, among other things, they enable us to compare sex determination processes between plants and animals. White campion (Silene latifolia, also named Lychnis or Melandrium) is dioecious and, much like us, females are homogametic (XX) and males are heterogametic (XY). Sexual dimorphism in white campion is controlled by two independent developmental pathways operating from the Y chromosome at very early developmental stages and within distinct regions of the flower. In addition, all basic steps in the evolution from the bisexual to the dioecious condition with heteromorphic sex chromosomes are known and available to experimentation in the genus Silene. This group of species has been under scrutiny for more than a century. Such an ideal experimental system enables us to tackle, with novel methodological tools, several classical questions in biology. These include the question of how sexual dimorphism evolved and how dimorphic development is controlled, as well as questions of how sex chromosomes evolve in the absence of meiotic recombination or how male-female genetic conflicts are generated. At the turn of the century, the time is now ripe to have a closer look. Received: 21 September 1999 / Accepted: 11 October 1999  相似文献   

7.
Zluvova J  Janousek B  Negrutiu I  Vyskot B 《Genetics》2005,170(3):1431-1434
Here we compare gene orders on the Silene latifolia sex chromosomes. On the basis of the deletion mapping results (11 markers and 23 independent Y chromosome deletion lines used), we conclude that a part of the Y chromosome (covering a region corresponding to at least 23.9 cM on the X chromosome) has been inverted. The gradient in silent-site divergence suggests that this inversion took place after the recombination arrest in this region. Because recombination arrest events followed by Y chromosome rearrangements also have been found in the human Y chromosome, this process seems to be a general evolutionary pathway.  相似文献   

8.
9.
We combine data from published marker genotyping of three sets of S. latifolia Y chromosome deletion mutants with changed sex phenotypes and add genotypes for several new genic markers to refine the deletion map of the Y chromosome and compare it with the X chromosome genetic map. We conclude that the Y chromosome of this species has been derived through multiple rearrangements of the ancestral gene arrangement and that none of the rearrangements so far detected was involved in stopping X-Y recombination. Different Y genotypes may also differ in their gene content and possibly arrangements, suggesting that mapping the Y-linked sex-determining genes will be difficult, even if many further genic markers are obtained. Even in determining the map of Y chromosome markers to discover all the rearrangements, physical mapping by FISH or other experiments will be essential. Future deletion mapping work should ensure that markers are studied in the parents of deletion mutants and should probably include additional deletions that were not ascertained by causing mutant sex phenotypes.  相似文献   

10.
11.
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.  相似文献   

12.
Both the chloroplast and mitochondrial genomes are used extensively in studies of plant population genetics and systematics. In the majority of angiosperms, the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) are each primarily transmitted maternally, but rare biparental transmission is possible. The extent to which the cpDNA and mtDNA are in linkage disequilibrium is argued to be dependent on the fidelity of co-transmission and the population structure. This study reports complete linkage disequilibrium between cpDNA and mtDNA haplotypes in 86 individuals from 17 populations of Silene vulgaris, a gynodioecious plant species. Phylogenetic analysis of cpDNA and mtDNA haplotypes within 14 individuals supports a hypothesis that the evolutionary histories of the chloroplasts and mitochondria are congruent within S. vulgaris, as might be expected if this association persists for long periods. This provides the first documentation of the evolutionary consequences of long-term associations between chloroplast and mitochondrial genomes within a species. Factors that contribute to the phylogenetic and linkage associations, as well as the potential for intergenomic hitchhiking resulting from selection on genes in one organellar genome are discussed.  相似文献   

13.
Ironside JE  Filatov DA 《Genetics》2005,171(2):705-713
Previous studies have demonstrated that the diversity of Y-linked genes is substantially lower than that of their X-linked homologs in the plant Silene latifolia. This difference has been attributed to selective sweeps, Muller's ratchet, and background selection, processes that are predicted to severely affect the evolution of the nonrecombining Y chromosome. We studied the DNA diversity of a noncoding region of the homologous genes DD44Y and DD44X, sampling S. latifolia populations from a wide geographical area and also including the closely related species S. dioica, S. diclinis, and S. heuffelii. On the Y chromosome of S. latifolia, we found substantial DNA diversity. Geographical population structure was far higher than on the X chromosome and differentiation between the species was also higher for the Y than for the X chromosome. Our findings indicate that the loss of genetic diversity on the Y chromosome in Silene occurs within local populations rather than within entire species. These results are compatible with background selection, Muller's ratchet, and local selective sweeps, but not with species-wide selective sweeps. The higher interspecific divergence of DD44Y, compared to DD44X, supports the hypothesis that Y chromosome differentiation between incipient species precedes reproductive isolation of the entire genome, forming an early stage in the process of speciation.  相似文献   

14.
Silene latifolia is a model dioecious plant with heteromorphic sex chromosomes. The Y chromosome is the largest in this species. Theoretical models propose an accumulation of repetitive DNA sequences in non-recombining parts of the Y chromosome. In this study, we isolated a BAC7H5 clone preferentially hybridizing to the Y chromosome of S. latifolia. Sequence analysis revealed that this BAC7H5 contains part of the chloroplast genome, indicating that these chloroplast sequences have accumulated on the Y chromosome and also may contribute to its large size. We constructed Y chromosome- and X chromosome-specific libraries and screened them to find Y- and/or X-linked copies of chloroplast sequences. Sequence analysis revealed higher divergence of a non-genic region of the chloroplast sequences located on the Y chromosome while genic regions tested showed only very low (max 0.9%) divergence from their chloroplast homologues.  相似文献   

15.
An outstanding candidate for a primary male-determining gene equivalent to Sry of mammals has been recently described from a non-mammalian vertebrate, the medaka fish (Oryzias latipes). However, the universality of dmY/dmrt1Y as the master sex-determining gene in fish is questionable. Phylogenetic analysis shows that dmY/dmrt1Y is an evolutionarily young Y chromosome-specific duplicate of a gene involved in testis development in vertebrates, and that this duplicate cannot be the primary sex-determining gene in most other fish species. Study of alternative fish models will probably uncover new genetic strategies controlling sexual dimorphism in vertebrates.  相似文献   

16.
17.
18.
We sequenced the protamine P1 gene (ca. 450 bp) from 20 bats (order Chiroptera) and the flying lemur (order Dermoptera). We compared these sequences with published sequences from 19 other mammals representing seven orders (Artiodactyla, Carnivora, Cetacea, Perissodactyla, Primates, Proboscidea, and Rodentia) to assess structure, base compositional bias, and phylogenetic utility. Approximately 80% of second codon positions were guanine, resulting in protamine proteins containing a high frequency of arginine residues. Our data indicate that codon usage for arginine differs among higher mammalian taxa. Parsimony analysis of 40 species representing nine orders produced a well-resolved tree in which most nodes were supported strongly, except at the lowest taxonomic levels (e.g., within Artiodactyla and Vespertilionidae). These data support monophyly of several taxa proposed by morphologic and molecular studies (all nine orders: Laurasiatheria, Cetartiodactytla, Yangochiroptera, Noctilionoidea, Rhinolophoidea, Vespertilionoidea, Phyllostomidae, Natalidae, and Vespertilionidae) and, in agreement with recent molecular studies, reject monophyly of Archonta, Volitantia, and Microchiroptera. Bats were sister to a clade containing Perissodactyla, Carnivora, and Cetartiodactyla, and, although not unequivocally, rhinolophoid bats (traditional microchiropterans) were sister to megachiropterans. Sequences of the protamine P1 gene are useful for resolving relationships at and above the familial level in bats, and generally within and among mammalian orders, but with some drawbacks. The coding and intervening sequences are small, producing few phylogenetically informative characters, and aligning the intron is difficult, even among closely related families. Given these caveats, the protamine P1 gene may be important to future systematic studies because its functional and evolutionary constraints differ from other genes currently used in systematic studies.  相似文献   

19.
20.
Dioecious Silene latifolia evolved heteromorphic sex chromosomes within the last ten million years, making it a species of choice for studies of the early stages of sex chromosome evolution in plants. About a dozen genes have been isolated from its sex chromosomes and basic genetic and deletion maps exist for the X and Y chromosomes. However, discrepancies between Y chromosome maps led to the proposal that individual Y chromosomes may differ in gene order. Here, we use an alternative approach, with fluorescence in situ hybridization (FISH), to locate individual genes on S. latifolia sex chromosomes. We demonstrate that gene order on the Y chromosome differs between plants from two populations. We suggest that dynamic gene order may be a general property of Y chromosomes in species with XY systems, in view of recent work demonstrating that the gene order on the Y chromosomes of humans and chimpanzees are dramatically different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号