首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Coriolis δ air sampler manufactured by Bertin Technologies (France) is a continuous air sampler, dedicated to outdoor monitoring of airborne spores and pollen grains. This high-volume sampler is based on patented Coriolis technology delivering a liquid sample. The air is drawn into a conical vial in a whirling type motion using suction; particles are pulled against the wall by centrifugal force. Airborne particles are separated from the air and collected in a liquid medium. This innovative solution allows rapid analysis by several techniques including PCR assay and serological assay in order to measure the antigenicity/allergenicity of pollen grains and fungal spores. Also, traditional counting of pollen grains or taxa identification by optical microscopy can be done. A study has been carried out by the Health Protection Agency (HPA), Porton Down, UK, to measure the physical efficiency of the Coriolis air sampler. The physical efficiency of the sampler for collection of micro-organism-laden particles of various sizes has been compared with that of membrane filter samplers using the techniques described by ISO 14698-1. The Coriolis was operated simultaneously with membrane filter samplers in a controlled room where they were challenged with uniform-sized particles of different diameters containing bacterial spores. For the larger particle sizes, it was found that the physical efficiency of the Coriolis was 92% for 10-μm particles. The biological performance of the Coriolis in the collection of airborne fungal spores and pollen grains was evaluated in comparison with a Hirst spore trap (one-week tape-on-drum type sampler) which is one of the most frequently used traps in the measurement of outdoor pollen grain concentrations. The advantages and limitations of both technologies are discussed. The Coriolis was operated simultaneously with a Hirst spore trap in the sampling station of Réseau National de Surveillance Aérobiologique, France (RNSA); the pollen grain and fungal spore counts were analysed by optical microscopy. The pollen grain count m−3 collected was compared for both devices. The dispersion values were obtained and statistical analysis was carried out. This study shows that the Coriolis air sampler provided equivalent recovery of pollen grain and fungal spores compared with the volumetric trap standard method (not significantly different, W test, α = 0.05). Nowadays, the French-led project, acronym MONALISA, with financial support from the European Commission––Life-Environment (LIFE05 ENV/F/000068), is testing this innovative air sampler in order to measure the antigenicity/allergenicity of the main aeroallergen particles, i.e. Betula (birch), Poaceae (grasses), Parietaria (pellitory), Olea spp (olive tree), and Artemisia (mugwort) pollen grains, and Alternaria (fungal spores) to validate a new approach of monitoring instead of quantifying pollen grains by their morphology. The robustness and efficiency of the MONALISA system is being demonstrated at a national level throughout Europe in eight different countries with different bio-climatic and topography characteristics: France, UK, Finland, Poland, Spain, Portugal, Switzerland, and Italy.  相似文献   

2.
In Melbourne, Australia, grass pollen is the predominant cause of hayfever in late spring and summer. The grass pollen season has been monitored in Melbourne, using a Burkard spore trap, for 13 years (1975–1981, 1985 and 1991–1997). Total counts for grass pollen were highly variable from one season to the next (approximately 1000 to >8000 grains/m3). The daily grass pollen counts also showed a high variability (0 to approximately 400 grains/m3). In this study, the grass pollen counts of the 13 years (12 grass pollen seasons, extending from October to January) have been compared with meteorological data in order to identify the conditions that can determine the daily amounts of grass pollen in the air. It was found that the seasonal total of grass pollen was directly correlated with the rainfall sum of the preceding 12 months (1 September–31 August): seasonal total of grass pollen (counts/m3)=18.161 × rainfall sum of the preceding 12 months (mm) −8541.5 (r s=0.74,P<0.005,n=12). The daily amounts of grass pollen in the air were positively correlated with the corresponding daily average ambient temperatures (P<0.001). The daily amount of grass pollen which was to be expected with a certain daily average temperature was linked to the seasonal total of grass pollen: in years with high total grass pollen counts, a lower daily average temperature was required for a high daily pollen count than in years with low total grass pollen counts. As the concentration of airborne grass pollen determines the severity of hayfever in sensitive patients, an estimation of daily grass pollen counts can provide an indication of potential pollinosis symptoms. We compared daily grass pollen counts with the reported symptomatic responses of hayfever sufferers in November 1985 and found that hayfever symptoms were significantly correlated to the grass pollen counts (P<0.001 for nasal,P<0.005 for eye symptoms). Thus, a combination of meteorological information (i.e. rainfall and temperature) allows for an estimation of the potential daily pollinosis symptoms during the grass pollen season. Here we propose a symptom estimation chart, allowing a quick prediction of eye and nasal symptoms that are likely to occur as a result of variations in meteorological conditions, thus enabling both physicians and patients to take appropriate avoidance measures or therapy.  相似文献   

3.
To accurately quantify airborne Aspergillus fumigatus (A. fumigatus) spores in rabbit houses, the real-time polymerase chain reaction (real-time PCR) and culture-based counting method (CCM) were employed to determine the airborne A. fumigatus spore concentrations. The results showed that, of the three rabbit houses (A, B, and C), the average concentrations of airborne A. fumigatus spores determined by real-time PCR were 3.0 × 103, 3.3 × 103, and 1.5 × 103 spores/m3 air, respectively, while those determined by CCM were 2.5 × 102, 2.8 × 102, and 1.1 × 102 colony-forming unit/m3 air (CFU/m3 air), respectively, i.e., the former concentration was 12–14 times higher than the latter one. Therefore, the conventional CCM underestimated the concentrations of airborne fungal spores, and it is insufficient to determine the microbial aerosol concentration and evaluate the health risk only using CCM.  相似文献   

4.
In this exploratory study, indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-D-glucan levels were determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected in five Cincinnati area homes that had no visible mold growth. The total count of fungal spores and pollen in the collected samples was conducted under the microscope and Limulus Amebocyte Lysate (LAL) chromogenic assay method was utilized for the determination of the (1→3)-β-D-glucan concentration. For the combined number concentration of fungal spores and pollen, the indoor and outdoor geometric mean values were 573 and 6,435 m−3, respectively, with a geometric mean of the Indoor/Outdoor (I/O) ratio of .09. The geometric means of indoor and outdoor (1→3)-β-D-glucan concentrations were .92 and 6.44 ng m−3, respectively, with a geometric mean of the I/O ratio equal to .14. The I/O ratio of (1→3)-β-D-glucan concentration was found to be marginally greater than that calculated based on the combined number concentration of fungal spores and pollen. This suggests that (1→3)-β-D-glucan data are affected not only by intact spores and pollen grains but also by the airborne fragments of fungi, pollen, and plant material, which are ignored by traditional enumeration methodologies. Since the (1→3)-β-D-glucan level may elucidate the total exposure to fungal spores, pollen, and fungal fragments, its I/O ratio may be used as a risk marker for mold and pollen exposure in indoor environments.  相似文献   

5.
In July 1994, we were able to collect airborne fungal spores and pollen grains over the Adriatic Sea from the upper deck of the Oceanographic Ship Urania (CNR). The biological particles were collected using a modified Lanzoni VPPS 1000 sampler (operating at a flux of 10 LPM), on glycerine-gelatine coated microscopic slides. Not only were the airborne concentrations of different organisms estimated, their viability was also tested with a 1% TTC solution. Particles were collected for 60 min (i.e. a volume of 600 liters of air sampled) at every 2 h from 0600–2100 h. Up to 689 pollen grains/m3 and an impressive 48 990 spores/m3 were collected daily. Forty-two fungal taxa were identified and the most abundant spores collected were Cladosporium (82.6%), Smuts (4.8%), Ascospores (2.8%), Basidiospores (2.1%) andAlternaria (1.7%). 20 pollen taxa were identified, and the dominant pollen were Urticaceae (57.9%), Graminaceae (20.7%), Fagaceae (2.4%), Plantaginaceae (1.4%), Pinaceae (1.3%) and Eucalyptus (1.1%). The most abundant captures were done at 0800 and 1000 h (17.8 and 16.7% respectively) and at 1400 and 1600 h (13.2 and 13.8% respectively). Pollen viability per species ranged from 0 to 100%, but for the most abundant taxa, it ranged from 3.8 to 75%, and averaged 27.7%. Maximum viability was found at 0800 and 1200 h. Pollen concentrations were of the same order of magnitude as the ones found on the mainland (Brindisi, Chieti, Matera). However, its specificity was evident. Future work should therefore look more at the pollen transport process which should account for this different assemblage of pollen.  相似文献   

6.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three Rotorod pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m–3 air for olive, 3–5 pollen m–3 air for grasses, 4–5 pollen m–3 air for Artemisia, 10–20 pollen m–3 air for pecan and 50–60 pollen m–3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

7.
Historically in the East Midlands, UK, airborne pollen has been monitored in two cities, Derby and Leicester, situated 41 km (25 miles) apart. The aim of the present study was to compare aerobiological data from both sites to determine if a forecast based on data from one site would be sufficient for both, and to address the wider issue of reproducibility between geographically separated sites. Pollen types recorded could be split into two groups according to annual abundance, maximum daily concentration and the number of high count days. Six taxa made up the abundant group; ash, birch, grass, oak, nettle-type and yew-type, representing 90 and 88% of the total air spora for Derby and Leicester, respectively. Three consecutive years of grass and nettle pollen data are presented, supported by one year of abundant tree pollen data. There were highly significant positive correlations between the counts obtained. Line charts showing the average number of pollen grains m−3 air day−1 show similar trends, and Bland–Altman plots show little discrepancy between the amounts of pollen counted on any given day. Each day was classified according to the UK accepted threshold levels for grass. Weighted kappa statistics showed substantial or almost perfect agreement between the forecast classifications. With the caveat that this would not apply in a region with restrictions to air flow such as a mountain range or with extreme fluctuations such as a coastline site, this study suggests that data from a single site is suitable for forecasting a distance of up to 41 km.  相似文献   

8.
Studies on Ambrosia pollen concentrations were carried out in Lublin in the period 1995–2004. The effects of a number of meteorological factors were analysed. In the first period of the study, the gravimetric method was used (1995–1999), while in the second period, the volumetric method was applied. The results show an increasing trend in the amount of airborne pollen. The Ambrosia pollen season in Lublin lasts from August to October. Over a period of 5 years, the highest number of pollen grains was recorded in September (53%), followed by August (44%) and October (3%). There were wide variations in annual totals. The annual total pollen counts was 167–1180 grains, with the peak value in 2002. Maximum daily pollen concentrations (56–312 pollen grains m−3) were recorded in the first half of August and in the first half of September. On the days when high Ambrosia pollen concentrations occurred, the temperature was above 21°C and the winds were mainly from the southeast, south and east. Maximum intradiurnal concentrations of pollen grains occurred in the afternoon hours. These results indicate, to some degree, that Ambrosia pollen is transported for long distances before descent.  相似文献   

9.
In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m−3) or high (50–100 pollen grains m−3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated (r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m−3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne’s air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne’s population that suffer from allergic problems.  相似文献   

10.
Volumetric data on airborne pollen have been gathered for two consecutive years at a neotropical location (Caracas). Among the 65 taxa which were identified, pollen from aCupressus species (introduced) and from aCecropia species (indigenous) were dominant. Less numerous but also abundant (daily averages ≥5 grains/m3 air) were pollen from Gramineae, Urticaceae,Alcalypha, Pinus, Piperaceae andMimosa. Pollen grains were recorded daily throughout the year. They increased in numbers during April–May and again during November–December. The first peak was contributed mainly by indigenous species, the second peak mainly by introduced species.  相似文献   

11.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14?months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three ‘Rotorod’ pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m?3 air for olive, 3–5 pollen m?3 air for grasses, 4–5 pollen m?3 air for Artemisia, 10–20 pollen m?3 air for pecan and 50–60 pollen m?3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

12.
In 12 selected flats in Sosnowiec, Upper Silesia, the concentrations of particulate aerosol, bioaerosol and bacterial endotoxin were examined. Concentrations of particulate aerosol, bacteria, fungi and endotoxin were in the order of 101–102 μg/m3, 101–103 cfu/m3, 100–102 cfu/m3 and 10−2–10−1 ng/m3, respectively. The most numerous group of microorganisms in indoor air during the winter season were Gram positive mesophilic bacteria. They were more common in flats polluted with tobacco smoke. The concentrations of airborne endotoxins were higher in flats polluted with tobacco smoke in all size ranges. The highest level of endotoxins was found in the fraction of fine particles below 5μm.  相似文献   

13.
The airborne pollens can produce asthma andrhinoconjuctivitis (pollinosis). Sincegeographic and climatic factors influence thequality and quantity of pollen counts invarious countries and between seasons, the aimof the study was to record major seasonalallergenic pollens; grasses, olive, parietariaand cypress in Athens during five consecutiveseasons throughout the years 1995–1999. Thedaily pollen count was carried out every yearfrom March to October using a Burcardvolumetric weekly spore trap, which was placedabout 20 m from the ground, in Athens citycentre. Daily values were expressed as numberof pollen grains/m3 of air. The meanmonthly values of pollens/m3 were used tocompare the results of the consecutive years.Recording of the major pollen allergens inAthens area for five consecutive years led tothe assessment of the pollination period foreach of these plants and confirmed thevariations in the amount of pollen per plantper year.  相似文献   

14.
The northern area of Córdoba province (southern Spain) is characterised by a high spatial distribution of Quercus species. In Córdoba city, high airborne Quercus pollen counts are detected during spring despite the low presence of Quercus populations in the Guadalquivir Valley, where this city is located. This study sought to clarify and identify the potential origin of the different Quercus peaks detected in this city and chart the possible relationship between Quercus pollen curves and air-mass movements. For this purpose, an integrated study of daily and intra-diurnal Quercus pollen counts and back-trajectory analysis was performed over the March–June period of the years 2006–2008. The application of cluster techniques to back trajectory enabled the identification of six different types of air-mass movement. As a function of frequency, two different air-mass groups were identified: the main group comprised Local, Slower Northwest and Mediterranean movements, characterised by higher frequencies; a second group consisting of North, Faster Northwest and Southwest trajectories occurred less frequently over the study period. Although a significant correlation was observed between Quercus airborne pollen counts recorded in Córdoba city and the influence of the Mediterranean air-mass movements, the strongest positive correlation was found between North and Northwest air-mass movements and daily Quercus pollen counts. These results would confirm both that the major Quercus pollen sources are located at different distances north of the city and a new pollen source is also located south of the province, beyond the Guadalquivir valley, related to the arrival of Mediterranean air masses. The northern source appears to be linked to regional transport and the southern source to long-range transport.  相似文献   

15.
Stein Johansen 《Grana》2013,52(2):373-379
A survey of airspora collected on Jan Mayen, an isolated North Atlantic island (71°N, 8°30′W), using a Burkard seven-day volumetric trap from 24th April to 31th August, 1988, revealed only very small concentrations. A total of 10 different pollen types were recorded, constituting a seasonal sum of 29 pollen grains. The local pollen season was confined to July, with Oxyria digna and Salix as the most numerous pollen types recorded. Exotic pollen grains, namely Betula, Pinus and Castanea type, were recorded in three periods during June and July. Studies of back trajectories indicate North America and/or Iceland and Greenland as possible source areas for the Betula pollen. There were more diatoms than pollen in the local airspora. Fungal spores mainly occurred in late July and August. Cladosporium constituted less than 5% of the total seasonal sum of fungal spores, while basidiospores contributed nearly 12%. The highest diurnal average of Cladosporium was 27 spores m?3 air. The seasonal maximum of unidentified fungal spores reached a diurnal average of 639 spores m?1 air on 27th August.  相似文献   

16.
This study was undertaken to investigate how the length of the extraction period influences the (1 → 3)-β-d-glucan (β-glucan) yield and also to examine the background concentration of β-glucan as airborne β-glucan in outdoor environments in different seasons and as concentrations in airborne and floor dust in offices. To ensure compatibility between results obtained in different laboratories, it is important to use optimal and standardised methods to extract and quantify β-glucan. In this study, an extraction period of 60 min gave the highest β-glucan yield. The median concentration of β-glucan in 44 floor dust samples was 597 μg g−1 dust. The median concentration of airborne β-glucan in offices was 5.1 ng m−3 in the summer and 2.3 ng m−3 in the winter, and the outdoor median concentration in towns was 6.8 ng m−3. The outdoor airborne concentration of β-glucan was significantly lower in January, November and December than during the rest of year. In July, the median airborne concentration of β-glucan was 14 times higher than in January. Furthermore, the airborne concentration of β-glucan was significantly higher in July than in March, April, May, September and October. In the summertime, we found that the indoor airborne concentration of β-glucan was lower than outdoor concentrations. This is in accordance with measurements of concentrations of airborne pollen and culturable fungal spores showing higher outdoor than indoor concentrations during the summer months.  相似文献   

17.
Many working environments are predisposed for larger than average amounts of fungi and other microorganisms often due to organic material being handled. From 2003 to 2007, the area used for strawberry production in Denmark increased by 62%. The purpose of this study was to determine the levels of exposure to microorganisms, endotoxin, (1→3)-β-d-glucan (β-glucan), and pollen in a field of strawberries. The study was carried out in eastern Denmark from the middle of June to the beginning of August 2008. The strawberries were grown organically, and microbiological pest control agents (MPCAs) were applied during this and former growth seasons. In order to measure exposure to inhalable bioaerosol components, we used stationary filter samplers. Bioaerosol sampling was performed during 4 working days, and a total of 57 samplings were performed. The filters were analysed for contents of fungi, MPCAs, endotoxin, β-glucan, and pollen. The mean exposure was 6,154 CFU Cladosporium sp. m−3, 1.0 × 105 fungal spores m−3, 4.1 × 104 hyphal fragments m−3, 5.8 × 103 pollen m−3, 57.3 ng β-glucan m−3, and 8.9 endotoxin units (EU) m−3. A significant and positive correlation was found between β-glucan and fungal spores and between CFU of Cladosporium sp. and CFU of fungi. We selected specifically for Metarhizium anisopliae, Beauveria bassiana, and the applied MPCAs Trichoderma harzianum, T. polysporum, and Bacillus thuringiensis but found none of these species. In conclusion, our study shows that berry pickers in this organic strawberry field were potentially subjected to higher levels of fungal spores, Cladosporium sp., hyphal fragments, pollen, and thus also β-glucan than is usually seen in outdoor air. Exposure to MPCAs was not seen. The exposure to endotoxin was only slightly higher than e.g. in a town.  相似文献   

18.
In July 1994, we were able to collect airborne fungal spores and pollen grains over the Adriatic Sea from the upper deck of the Oceanographic Ship Urania (CNR). The biological particles were collected using a modified Lanzoni VPPS 1000 sampler (operating at a flux of 10 LPM), on glycerine-gelatine coated microscopic slides. Not only were the airborne concentrations of different organisms estimated, their viability was also tested with a 1% TTC solution. Particles were collected for 60 min (i.e. a volume of 600 liters of air sampled) at every 2 h from 0600–2100 h. Up to 689 pollen grains/m3 and an impressive 48 990 spores/m3 were collected daily. Forty-two fungal taxa were identified and the most abundant spores collected were Cladosporium (82.6%), Smuts (4.8%), Ascospores (2.8%), Basidiospores (2.1%) andAlternaria (1.7%). 20 pollen taxa were identified, and the dominant pollen were Urticaceae (57.9%), Graminaceae (20.7%), Fagaceae (2.4%), Plantaginaceae (1.4%), Pinaceae (1.3%) and Eucalyptus (1.1%). The most abundant captures were done at 0800 and 1000 h (17.8 and 16.7% respectively) and at 1400 and 1600 h (13.2 and 13.8% respectively). Pollen viability per species ranged from 0 to 100%, but for the most abundant taxa, it ranged from 3.8 to 75%, and averaged 27.7%. Maximum viability was found at 0800 and 1200 h. Pollen concentrations were of the same order of magnitude as the ones found on the mainland (Brindisi, Chieti, Matera). However, its specificity was evident. Future work should therefore look more at the pollen transport process which should account for this different assemblage of pollen.  相似文献   

19.
Indoor and outdoor airborne fungal propagule concentrations in Mexico City   总被引:7,自引:0,他引:7  
Thirty homes of asthmatic adults located in Mexico City were examined to determine the predominant culturable fungi and the changes in their airborne concentrations. Fungi were cultured and identified microscopically from air samples collected in naturally ventilated homes, during both wet (July–August) and cool dry (November–December) seasons, and from settled dust from the same homes. Airborne dust from indoor yielded 99–4950 cfu m−3, and settled dust 102–106 cfu g−1 on DG18 agar. The indoor geometric mean concentration of airborne fungi during the cool dry season was 460 cfu m−3 while in the wet season it was 141 cfu m−3. Similarly, numbers of airborne fungal propagules out of doors decreased 60% between the dry and wet season. In general, the total fungal concentrations in indoor air were less than 103 cfu m−3 and a large proportion of them was collected in Stage-2 of the Andersen sampler. Moreover, the ratio between indoor and outdoor concentrations was <3:1. Five of the 30 sampled homes yielded >500 cfu m−3 of one genus, with up to 1493Cladosporium cfu m−3 or 2549Penicillium cfu m−3. Also, these two genera were predominant in both airborne and settled dust, and their concentrations were greater indoors than out, indicating a possible indoor source of fungal propagules. The predominant species wereCladosporium herbarum, Penicillium aurantiogriseum andP. chrysogenum. These results suggest that exposure to large concentrations of fungi occurs indoors and is associated with both seasons of the year and with particular home characteristics.  相似文献   

20.
Ragweed (genus Ambrosia) and mugwort (Artemisia vulgaris) pollen grains are known to be very potent aeroallergens, often noted to enter into cross reactions. The aim of the study was to analyse ragweed and mugwort pollen release in Szczecin (western Poland) during the period 2000–2003. Measurements were performed by the volumetric and gravimetric method. Pollen seasons were defined as the periods of 90% of the total catch. Of the 4 years studied, the lowest concentration of ragweed pollen was observed in 2000. In 2000, the annual ragweed pollen count was very high, threefold higher than in 2001. There was a high Ambrosia pollen count in 2003, with the highest daily value of 84 grains/m3. The mugwort pollen season started in the third 10-day period of July and lasted to the end of August in all of the years studied. Analysis of pollen deposition from different Szczecin city’s districts showed that the highest exposure to ragweed pollen allergens occurred in the Majowe district, which is related to the presence of numerous plants of Ambrosia in that district. The mugwort pollen deposition was more abundant in the Żelechowa district, which is an area with villas and gardens. Statistically significant correlations were found between the ragweed pollen count in the air and the maximum wind speed, air temperature and relative humidity and between the mugwort pollen count in the air and air temperature and relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号