首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct utilization of mannose for mammalian glycoprotein biosynthesis   总被引:4,自引:1,他引:3  
Direct utilization of mannose for glycoprotein biosynthesis has not been studied because cellular mannose is assumed to be derived entirely from glucose. However, animal sera contain sufficient mannose to force uptake through glucose-tolerant, mannose-specific transporters. Under physiological conditions this transport system provides 75% of the mannose for protein glycosylation in human hepatoma cells despite a 50- to 100-fold higher concentration of glucose. This suggests that direct use of mannose is more important than conversion from glucose. Consistent with this finding the liver is low in phosphomannose isomerase activity (fructose-6-P<->mannose-6-P), the key enzyme for supplying glucose-derived mannose to the N-glycosylation pathway. [2- 3H] Mannose is rapidly absorbed from the intestine of anesthetized rats and cleared from the blood with a t1/2of 30 min. After a 30 min lag, label is incorporated into plasma glycoproteins, and into glycoproteins of all organs during the first hour. Most (87%) of the initial incorporation occurs in the liver, but this decreases as radiolabeled plasma glycoproteins increase. Radiolabel in glycoproteins also increases 2- to 6-fold in other organs between 1-8 h, especially in lung, skeletal muscle, and heart. These organs may take up hepatic- derived radiolabeled plasma glycoproteins. Significantly, the brain, which is not exposed to plasma glycoproteins, shows essentially no increase in radiolabel. These results suggest that mammals use mannose transporters to deliver mannose from blood to the liver and other organs for glycoprotein biosynthesis. Additionally, contrary to expectations, most of the mannose for glycoprotein biosynthesis in cultured hepatoma cells is derived from mannose, not glucose. Extracellular mannose may also make a significant contribution to glycoprotein biosynthesis in the intact organism.   相似文献   

2.
We have developed an efficient method for labeling the Asn-linked oligosaccharides of recombinant glycoproteins synthesized in Xenopus laevis oocytes. By coinjecting GDP-[3,4-(3)H]mannose with mRNA for human cathepsin D, it was possible to incorporate as much as 1800 cpm per oocyte into each of the two Asn-linked oligosaccharides of this glycoprotein. Overall, about 50% of the microinjected GDP-[3,4-(3)H]mannose was incorporated into Asn-linked oligosaccharides, a 10-fold greater value than that obtained when [2-(3)H]mannose was microinjected. Less than 10% of the injected GDP-[3,4-(3)H]mannose was metabolized to water or converted to amino acids. This technique should facilitate studies of Asn-linked oligosaccharide biosynthesis, processing, and structure in recombinant proteins synthesized in Xenopus oocytes.  相似文献   

3.
Summary The molecular mechanism of reduced incorporation of radioactively labeled mannose into hamster liver glycoconjugates during the progression of vitamin A deficiency was investigated. In particular the in vivo incorporation of [2-3H]mannose into GDP-mannose, dolichyl phosphate mannose (Dol-P-Man), lipid-linked oligosaccharides, and glycopeptides of hamster liver was examined. Hamsters maintained on a vitamin A-free diet showed a reduction in the incorporation of mannose into GDP-mannose about 10 days before clinical signs of vitamin A deficiency could be observed. The decrease in [2-3H]mannose incorporated into GDP-mannose was accompanied by a reduction in label incorporated into Dol-P-Man, lipid linked oligosaccharides and glycopeptides, which became more severe with the progression of vitamin A deficiency. By the time they reached a plateau stage of growth, hamsters fed the vitamin A-free diet showed a 50% reduction in the amount of [2-3H]mannose converted to GDP-mannose, and the radioactivity associated with Dol-P-Man and glycopeptides was reduced by approximately 60% as compared to retinoic acid-supplemented controls. These results strongly indicate that the reduced incorporation of mannose into lipidic intermediates and glycoproteins observed during vitamin A deficiency is due to impaired GDP-mannose synthesis.Abbreviations Dol-P-Man Dolichyl Phosphate Mannose - Dol-P Dolichyl Phosphate  相似文献   

4.
2-Deoxy-2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-D-[3H]mannose have been prepared by tritiation of the corresponding unlabeled 2-fluoro sugars. The tritiated 2-fluoro sugars are phosphorylated and activated by UTP and by GTP to yield UDP-2-deoxy-2-fluoro-D-[3H]glucose, UDP-2-deoxy-2-fluoro-D-[3H]mannose, GDP-2-deoxy-2-fluoro-D-[3H]glucose and GDP-2-deoxy-2-fluoro-D-[3H]mannose in both cell types. The nucleotide derivatives could also be labeled in the nucleotide moiety by feeding the cells with [14C]uridine or [14C]guanosine in the presence of unlabeled 2-fluoro sugar. No evidence was obtained for metabolic steps in which the six-carbon chain of 2-fluoro sugars was not preserved. No epimerisation of the label to 2-deoxy-2-fluoro-D-[3H]galactose could be observed by radioactive gas-liquid chromatography of the enzymatic cleavage products of the different 2-fluoro sugar metabolites isolated from either cell type. Yeast and chick embryo cells both incorporate 2-deoxy-2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-D-[3H]mannose specifically into glycoproteins, although this incorporation is very low when compared to the incorporation of 2-deoxy-D-[3H]glucose.  相似文献   

5.
We have used Chinese hamster ovary (CHO) cells and a murine lymphoma cell line to study the recycling of the 215-kD and the 46-kD mannose 6-phosphate receptors to various regions of the Golgi to determine the site where the receptors first encounter newly synthesized lysosomal enzymes. For assessing return to the trans-most Golgi compartments containing sialyltransferase (trans-cisternae and trans-Golgi network), the oligosaccharides of receptor molecules on the cell surface were labeled with [3H]galactose at 4 degrees C. Upon warming to 37 degrees C, the [3H]galactose residues on both receptors were substituted with sialic acid with a t1/2 approximately 3 hrs. Other glycoproteins acquired sialic acid at least 8-10 times slower. Return of the receptors to the trans-Golgi cisternae containing galactosyltransferase could not be detected. Return to the cis/middle Golgi cisternae containing alpha-mannosidase I was measured by adding deoxymannojirimycin, a mannosidase I inhibitor, during the initial posttranslational passage of [3H]mannose-labeled glycoproteins through the Golgi, thereby preserving oligosaccharides which would be substrates for alpha-mannosidase I. After removal of the inhibitor, return to the early Golgi with subsequent passage through the Golgi complex was measured by determining the conversion of the oligosaccharides from high mannose to complex-type units. This conversion was very slow for the receptors and other glycoproteins (t1/2 approximately 20 h). Exposure of the receptors and other glycoproteins to the dMM-sensitive alpha-mannosidase without movement through the Golgi apparatus was determined by measuring the loss of mannose residues from these proteins. This loss was also slow. These results indicate that both Man-6-P receptors routinely return to the Golgi compartment which contains sialyltransferase and recycle through other regions of the Golgi region less frequently. We infer that the trans-Golgi network is the major site for lysosomal enzyme sorting in CHO and murine lymphoma cells.  相似文献   

6.
MPI encodes phosphomannose isomerase, which interconverts fructose 6-phosphate and mannose 6-phosphate (Man-6-P), used for glycoconjugate biosynthesis. MPI mutations in humans impair protein glycosylation causing congenital disorder of glycosylation Ib (CDG-Ib), but oral mannose supplements normalize glycosylation. To establish a mannose-responsive mouse model for CDG-Ib, we ablated Mpi and provided dams with mannose to rescue the anticipated defective glycosylation. Surprisingly, although glycosylation was normal, Mpi(-/-) embryos died around E11.5. Mannose supplementation even hastened their death, suggesting that man-nose was toxic. Mpi(-/-) embryos showed growth retardation and placental hyperplasia. More than 90% of Mpi(-/-) embryos failed to form yolk sac vasculature, and 35% failed chorioallantoic fusion. We generated primary embryonic fibroblasts to investigate the mechanisms leading to embryonic lethality and found that mannose caused a concentration- and time-dependent accumulation of Man 6-P in Mpi(-/-) fibroblasts. In parallel, ATP decreased by more than 70% after 24 h compared with Mpi(+/+) controls. In cell lysates, Man-6-P inhibited hexokinase (70%), phosphoglucose isomerase (65%), and glucose-6-phosphate dehydrogenase (85%), but not phosphofructokinase. Incubating intact Mpi(-/-) fibroblasts with 2-[(3)H]deoxyglucose confirmed mannose-dependent hexokinase inhibition. Our results in vitro suggest that mannose toxicity in Mpi(-/-) embryos is caused by Man-6-P accumulation, which inhibits glucose metabolism and depletes intracellular ATP. This was confirmed in E10.5 Mpi(-/-) embryos where Man-6-P increased more than 10 times, and ATP decreased by 50% compared with Mpi(+/+) littermates. Because Mpi ablation is embryonic lethal, a murine CDG-Ib model will require hypomorphic Mpi alleles.  相似文献   

7.
Korner  C; Lehle  L; von Figura  K 《Glycobiology》1998,8(2):165-171
In fibroblasts from five patients with carbohydrate-deficient glycoprotein syndrome type 1, the incorporation of [2-3H] mannose into mannose phosphates, GDP-mannose, GDP-fucose, dolichol-P-mannose, lipid- linked oligosaccharides, and glycoprotein fraction was determined. We observed a 3- to 5-fold reduction of incorporation of radioactivity into mannose 1-phosphate, GDP-mannose, GDP-fucose, dolichol-P-mannose, and nascent glycoproteins. The incorporation of radioactivity into mannose 6-phosphate was normal. The formation of lipid linked oligosaccharides was only slightly affected (</=20%), but their size was severely reduced, mostly containing five or fewer residues. As a consequence, truncated oligosaccharides were transferred to newly synthesized glycoproteins. The metabolic changes can be explained by a deficiency of phosphomannomutase activity, which was reduced to </=10% of control.   相似文献   

8.
Four inhibitors of oligosaccharide processing were used to investigate their effects on the transport of PNS myelin glycoproteins through the secretory pathway, as well as to gain further insight into the structure of the oligosaccharide chains of the P0 and 19-kDa glycoproteins. Several different inhibitors of oligosaccharide processing were incubated with chopped peripheral nerves from young rats (21-24 days of age) and the uptake of 14C-amino acid and [3H]fucose or [3H]mannose was measured in P0 and the 19-kDa glycoprotein after separation of homogenate and myelin proteins on polyacrylamide gels. [3H]Mannose was not found as suitable as [3H]fucose as an oligosaccharide precursor because glucose used as an energy source profoundly inhibited the uptake of [3H]mannose. The substitution of pyruvate as an energy source, however, resulted in incomplete glycosylation, poor amino acid uptake, and truncated oligosaccharide chains. Endoglycosidase H cleaved approximately 50% of the P0 labeled with [3H]fucose and 14C-amino acid. The lower molecular weight protein resulting from endoglycosidase H cleavage contained approximately one-half the [3H]fucose label on the protein, whereas one-half remained on the oligosaccharide chain of the undegraded P0, indicating that at least one-half the P0 has a hybrid structure. Deoxynojirimycin, deoxymannojirimycin, and castanospermine inhibited incorporation of [3H]fucose into the oligosaccharide chains of P0 and the 19-kDa glycoprotein as predicted from their action in blocking various stages of trimming of high mannose structures before the addition of fucose. P0 synthesized in the presence of these inhibitors was cleaved to a greater extent by endoglycosidase H than the normal protein, indicating increased vulnerability to this enzyme with arrest of normal processing. Similar results were obtained for the 19-kDa glycoprotein. Both the incompletely processed P0 and the 19-kDa glycoprotein formed in the presence of these inhibitors appeared to be transported normally into myelin.  相似文献   

9.
Endogenous proteins of cell-free preparations of hen oviduct labeled from GDP-[14C]Man or from [Man-14C]oligosaccharide-lipid have been compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Under the conditions tested, a polypeptide chain of molecular weight about 25,000 was the principle acceptor for the oligosaccharide moiety of exogenous [Man-14C]oligosaccharide-lipid. The product labeled by [Man-14C]oligosaccharide-lipid appeared identical with one of three glycoproteins formed when GDP-[14C]Man was incubated with a crude membrane fraction. These three proteins (apparent molecular weight of 75,000, 55,000, and 25,000) accounted for nearly two-thirds of the [14C]mannose-labeled glycoprotein products using GDP-[14C]Man and either the crude membrane fraction or a total oviduct homogenate. Thus, all of the mannose acceptor proteins present in the oviduct homogenate appear to be membrane-bound. Analyses of the [Man-14C]glycoproteins labeled from GDP-[14C]Man in membrane fractions from hen kidney, liver, brain, and oviduct indicated that a labeled polypeptide of apparent molecular weight 25,000 was the only major protein product common to the four preparations.  相似文献   

10.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

11.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9.  相似文献   

12.
Proteinase A, a yeast aspartyl protease that is highly homologous to the mammalian lysosomal aspartyl protease, cathepsin D, was expressed in Xenopus oocytes and its biosynthesis and post-translational modifications were characterized. While 29-45% of the proteinase A was secreted from oocytes, approximately 37% of the cell-associated proteinase A underwent proteolytic cleavage, characteristic of delivery to a lysosomal organelle. Although proteinase A is not targeted to the yeast vacuole by a mannose 6-phosphate receptor-dependent pathway, 2-5% of the proteinase A molecules expressed in oocytes bound to a Man-6-P receptor column. However, analysis of its [2-3H]mannose-labeled oligosaccharides revealed that 14-23% of these units contain phosphomannosyl residues. A hybrid molecule (H6), in which the propiece and first 12 amino acids of proteinase A were changed to the cathepsin D sequence, was also expressed in oocytes. The binding of H6 to the Man-6-P receptor was approximately 12-fold greater than observed for proteinase A. This increased level of receptor binding could be accounted for by three factors: 1) a small increase in the total amount of phosphorylated oligosaccharides, 2) an increase in the number of oligosaccharides which acquire two phosphomonoesters, and 3) the presence of a greater percentage of oligosaccharides with one phosphomonoester which exhibit high affinity binding to the Man-6-P receptor. These results demonstrate that proteinase A is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosaminylphosphotransferase. However, this interaction is altered by the addition of cathepsin D sequences, resulting in the generation of a higher affinity ligand for binding to the Man-6-P receptor.  相似文献   

13.
beta-Adrenergic stimulation of rat parotid acinar cells markedly increases [3H]mannose incorporation into N-linked glycoproteins [Kousvelari, Grant, Banerjee, Newby & Baum (1984) Biochem. J. 222, 17-24]. More than 90% of this protein-bound [3H]mannose was preferentially incorporated into four secretory glycoproteins. The ratio of [3H]mannose/[14C]leucine present in these individual proteins was 1.7-4-fold greater with isoproterenol-treated cells than with untreated controls. In isoproterenol-stimulated cells, [3H]mannose incorporation into mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol was increased 2-3-fold over that observed in unstimulated cells. Similarly, formation of mannosylated oligosaccharide-PP-dolichol was increased approx. 4-fold in microsomes prepared from isoproterenol-treated cells. Also, turnover of oligosaccharide-PP-dolichol was significantly increased (5-fold) by beta-adrenergic stimulation; the half-life for oligosaccharide-PP-dolichol decreased from 6 min in control cells to 1.2 min in isoproterenol-stimulated cells. By 15 min after isoproterenol addition to acinar cells, the specific radioactivity of parotid oligosaccharide moieties increased about 3-fold over the value observed in the absence of the agonist. Taken together, these results strongly suggest that elevation of N-linked protein glycosylation in rat parotid acinar cells after beta-adrenoreceptor stimulation resulted from significant enhancement in the synthesis of mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol and the turnover of oligosaccharide-PP-dolichol.  相似文献   

14.
Mannose in N-glycans is derived from glucose through phosphomannose isomerase (MPI, Fru-6-P ↔ Man-6-P) whose deficiency causes a congenital disorder of glycosylation (CDG)-Ib (MPI-CDG). Mannose supplements improve patients'' symptoms because exogenous mannose can also directly contribute to N-glycan synthesis through Man-6-P. However, the quantitative contributions of these and other potential pathways to glycosylation are still unknown. We developed a sensitive GC-MS-based method using [1,2-13C]glucose and [4-13C]mannose to measure their contribution to N-glycans synthesized under physiological conditions (5 mm glucose and 50 μm mannose). Mannose directly provides ∼10–45% of the mannose found in N-glycans, showing up to a 100-fold preference for mannose over exogenous glucose based on their exogenous concentrations. Normal human fibroblasts normally derive 25–30% of their mannose directly from exogenous mannose, whereas MPI-deficient CDG fibroblasts with reduced glucose flux secure 80% of their mannose directly. Thus, both MPI activity and exogenous mannose concentration determine the metabolic flux into the N-glycosylation pathway. Using various stable isotopes, we found that gluconeogenesis, glycogen, and mannose salvaged from glycoprotein degradation do not contribute mannose to N-glycans in fibroblasts under physiological conditions. This quantitative assessment of mannose contribution and its metabolic fate provides information that can help bolster therapeutic strategies for treating glycosylation disorders with exogenous mannose.  相似文献   

15.
The aim of the present study was to explore how mannose enters fibroblasts derived from a panel of children suffering from different subtypes of type I carbohydrate deficient glycoprotein syndrome: seven carbohydrate deficient glycoprotein syndrome subtype Ia (phosphomannomutase deficiency), two carbohydrate deficient glycoprotein syndrome subtype Ib (phosphomannose isomerase deficiency) and two carbohydrate deficient glycoprotein syndrome subtype Ix (not identified deficiency). We showed that a specific mannose transport system exists in all the cells tested but has different characteristics with respect to carbohydrate deficient glycoprotein syndrome subtypes. Subtype Ia fibroblasts presented a mannose uptake equivalent or higher (maximum 1.6-fold) than control cells with a D-[2-3H]-mannose incorporation in nascent N-glycoproteins decreased up to 7-fold. Compared to control cells, the mannose uptake was greatly stimulated in subtype Ib (4.0-fold), due to lower Kuptake and higher Vmax values. Subtype Ib cells showed an increased incorporation of D-[2-3H]-mannose into nascent N-glycoproteins. Subtype Ix fibroblasts presented an intermediary status with mannose uptake equivalent to the control but with an increased incorporation of D-[2-3H]-mannose in nascent N-glycoproteins. All together, our results demonstrate quantitative and/or qualitative modifications in mannose transport of all carbohydrate deficient glycoprotein syndrome fibroblasts in comparison to control cells, with a relative homogeneity within a considered subtype of carbohydrate deficient glycoprotein syndrome. These results are consistent with the possible use of mannose as a therapeutic agent in carbohydrate deficient glycoprotein syndrome Ib and Ix.  相似文献   

16.
Populations of enriched glial precursor cells and astrocytes isolated from primary cultures of newborn rat brain were used to study the synthesis of sulfated glycoproteins. Both cell types incorporated [3H]glucosamine and [35S]sulfate into carbohydrate side chains of proteoglycans and glycoproteins. The rate of incorporation of [3H]glucosamine into the oligosaccharides and the pattern of distribution of the label into high mannose and complex glycopeptides recovered from the glycoproteins appeared to be similar for the two glial cell types. However, clear differences were noted in the rate of oligosaccharide sulfation activities. Thus the cultures of precursor glia were about four times more active than cultures enriched in astroglia in their ability to incorporate [35S]sulfate into glycoproteins.  相似文献   

17.
In this report we present an initial determination of the biochemical defect present in a Chinese hamster ovary cell line selected for resistance to concanavalin A. Membranes of this mutant, B211, incorporated at least 10-fold less mannose from GDP-[14C]mannose into oligosaccharide-lipid than membranes of the wild type. In the presence of dolichol phosphate, membranes of the mutant and wild type exhibited similar rates of synthesis of number of early intermediates, namely, mannosylphosphoryldolichol, N-acetylglucosaminyl- and N,N'-diacetylchitobiosylpyrophosphoryldolichol, glucosylphosphoryldolichol, and mannosyloligosaccharide-lipid. The membranes of B211 did not incorporate glucose from UDP-[3H]glucose into oligosaccharide-lipid or protein. Comparison by gel filtration chromatography of oligosaccharides derived from the oligosaccharide-lipids of B211 and wild type cells labeled with [2-3H]mannose revealed that B211 cells incorporated little if any label into an oligosaccharide corresponding to the most excluded oligosaccharide labeled by wild type cells. This concanavalin A-resistant cell line appears to lack the ability to glucosylate oligosaccharide-lipid.  相似文献   

18.
The N-linked oligosaccharides found on the lysosomal enzymes from Dictyostelium discoideum are highly sulfated and contain methylphosphomannosyl residues (Gabel, C. A., Costello, C. E., Reinhold, V. N., Kurtz, L., and Kornfeld, S. (1984) J. Biol. Chem. 259, 13762-13769). Here we report studies done on the structure of N-linked oligosaccharides found on proteins secreted during growth, a major portion of which are lysosomal enzymes. Cells were metabolically labeled with [2-3H]Man and 35SO4 and a portion of the oligosaccharides were released by a sequential digestion with endoglycosidase H followed by endoglycosidase/peptide N-glycosidase F preparations. The oligosaccharides were separated by anion exchange high performance liquid chromatography into fractions containing from one up to six negative charges. Some of the oligosaccharides contained only sulfate esters or phosphodiesters, but most contained both. Less than 2% of the oligosaccharides contained a phosphomonoester or an acid-sensitive phosphodiester typical of the mammalian lysosomal enzymes. A combination of acid and base hydrolysis suggested that most of the sulfate esters were linked to primary hydroxyl groups. The presence of Man-6-SO4 was demonstrated by the appearance of 3,6-anhydromannose in acid hydrolysates of base-treated, reduced oligosaccharides. These residues were not detected in acid hydrolysates without prior base treatment or in oligosaccharides first treated by solvolysis to remove sulfate esters. Based on high performance liquid chromatography quantitation of percentage of 3H label found in 3,6-anhydromannose, it is likely that Man-6-SO4 accounts for the majority of the sulfated sugars in the oligosaccharides released from the secreted glycoproteins.  相似文献   

19.
The cation-independent mannose 6-phosphate receptor (215,000 daltons) was isolated from embryonic bovine tracheal cells and embryonic human skin fibroblasts labelled with [3H]palmitic acid. The tritium label was detected in the protein upon fluorographic analysis of SDS-polyacrylamide gels of the purified receptor. The label was not sensitive to hydroxylamine, methanolic KOH, or beta-mercaptoethanol, but labelled fatty acid was recovered from the protein by acidic methanolysis. Labelled receptor protein could not be isolated from cells grown in the presence of [3H]myristic acid. The results suggest the presence of amide-linked palmitic acid in the structure of the cation-independent mannose 6-phosphate receptor.  相似文献   

20.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号